The Minimal Volume of Simplices Containing a Convex Body
- Autores
- Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CONVEX BODIES
ISOTROPIC POSITION
RANDOM SIMPLICES
SIMPLICES
VOLUME RATIO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116939
Ver los metadatos del registro completo
id |
CONICETDig_051c2d3faf6ee23e7e6eaa8d61c592d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116939 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Minimal Volume of Simplices Containing a Convex BodyGalicer, Daniel EricMerzbacher, Diego MarianoPinasco, DamianCONVEX BODIESISOTROPIC POSITIONRANDOM SIMPLICESSIMPLICESVOLUME RATIOhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116939Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; The Minimal Volume of Simplices Containing a Convex Body; Springer; The Journal Of Geometric Analysis; 29; 1; 1-2019; 717-7321050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-018-0016-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-018-0016-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:07Zoai:ri.conicet.gov.ar:11336/116939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:07.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Minimal Volume of Simplices Containing a Convex Body |
title |
The Minimal Volume of Simplices Containing a Convex Body |
spellingShingle |
The Minimal Volume of Simplices Containing a Convex Body Galicer, Daniel Eric CONVEX BODIES ISOTROPIC POSITION RANDOM SIMPLICES SIMPLICES VOLUME RATIO |
title_short |
The Minimal Volume of Simplices Containing a Convex Body |
title_full |
The Minimal Volume of Simplices Containing a Convex Body |
title_fullStr |
The Minimal Volume of Simplices Containing a Convex Body |
title_full_unstemmed |
The Minimal Volume of Simplices Containing a Convex Body |
title_sort |
The Minimal Volume of Simplices Containing a Convex Body |
dc.creator.none.fl_str_mv |
Galicer, Daniel Eric Merzbacher, Diego Mariano Pinasco, Damian |
author |
Galicer, Daniel Eric |
author_facet |
Galicer, Daniel Eric Merzbacher, Diego Mariano Pinasco, Damian |
author_role |
author |
author2 |
Merzbacher, Diego Mariano Pinasco, Damian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CONVEX BODIES ISOTROPIC POSITION RANDOM SIMPLICES SIMPLICES VOLUME RATIO |
topic |
CONVEX BODIES ISOTROPIC POSITION RANDOM SIMPLICES SIMPLICES VOLUME RATIO |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened. Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116939 Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; The Minimal Volume of Simplices Containing a Convex Body; Springer; The Journal Of Geometric Analysis; 29; 1; 1-2019; 717-732 1050-6926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116939 |
identifier_str_mv |
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; The Minimal Volume of Simplices Containing a Convex Body; Springer; The Journal Of Geometric Analysis; 29; 1; 1-2019; 717-732 1050-6926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-018-0016-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-018-0016-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269738748608512 |
score |
13.13397 |