A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
- Autores
- Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Nill, Benjamin. Case Western Reserve University; Estados Unidos
Fil: Vergne, Michèle. Institut de mathématiques de Jussieu; Francia - Materia
-
Lattice Polytope
Discriminant
Volume
Interior Points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19891
Ver los metadatos del registro completo
id |
CONICETDig_8d5c88e3a82393e976b20c520544c534 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19891 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopesUne relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliersDickenstein, Alicia MarcelaNill, BenjaminVergne, MichèleLattice PolytopeDiscriminantVolumeInterior Pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Nill, Benjamin. Case Western Reserve University; Estados UnidosFil: Vergne, Michèle. Institut de mathématiques de Jussieu; FranciaElsevier Masson2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19891Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-2331631-073XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.crma.2012.02.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1631073X12000398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:48Zoai:ri.conicet.gov.ar:11336/19891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:48.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes Une relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliers |
title |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
spellingShingle |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes Dickenstein, Alicia Marcela Lattice Polytope Discriminant Volume Interior Points |
title_short |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
title_full |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
title_fullStr |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
title_full_unstemmed |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
title_sort |
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Nill, Benjamin Vergne, Michèle |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Nill, Benjamin Vergne, Michèle |
author_role |
author |
author2 |
Nill, Benjamin Vergne, Michèle |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Lattice Polytope Discriminant Volume Interior Points |
topic |
Lattice Polytope Discriminant Volume Interior Points |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2]. Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Nill, Benjamin. Case Western Reserve University; Estados Unidos Fil: Vergne, Michèle. Institut de mathématiques de Jussieu; Francia |
description |
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2]. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19891 Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-233 1631-073X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19891 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-233 1631-073X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.crma.2012.02.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1631073X12000398 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Masson |
publisher.none.fl_str_mv |
Elsevier Masson |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981316895703040 |
score |
12.48226 |