A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes

Autores
Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Nill, Benjamin. Case Western Reserve University; Estados Unidos
Fil: Vergne, Michèle. Institut de mathématiques de Jussieu; Francia
Materia
Lattice Polytope
Discriminant
Volume
Interior Points
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19891

id CONICETDig_8d5c88e3a82393e976b20c520544c534
oai_identifier_str oai:ri.conicet.gov.ar:11336/19891
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopesUne relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliersDickenstein, Alicia MarcelaNill, BenjaminVergne, MichèleLattice PolytopeDiscriminantVolumeInterior Pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Nill, Benjamin. Case Western Reserve University; Estados UnidosFil: Vergne, Michèle. Institut de mathématiques de Jussieu; FranciaElsevier Masson2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19891Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-2331631-073XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.crma.2012.02.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1631073X12000398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:48Zoai:ri.conicet.gov.ar:11336/19891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:48.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
Une relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliers
title A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
spellingShingle A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
Dickenstein, Alicia Marcela
Lattice Polytope
Discriminant
Volume
Interior Points
title_short A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
title_full A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
title_fullStr A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
title_full_unstemmed A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
title_sort A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
dc.creator.none.fl_str_mv Dickenstein, Alicia Marcela
Nill, Benjamin
Vergne, Michèle
author Dickenstein, Alicia Marcela
author_facet Dickenstein, Alicia Marcela
Nill, Benjamin
Vergne, Michèle
author_role author
author2 Nill, Benjamin
Vergne, Michèle
author2_role author
author
dc.subject.none.fl_str_mv Lattice Polytope
Discriminant
Volume
Interior Points
topic Lattice Polytope
Discriminant
Volume
Interior Points
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Nill, Benjamin. Case Western Reserve University; Estados Unidos
Fil: Vergne, Michèle. Institut de mathématiques de Jussieu; Francia
description We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than [dim P / 2].
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19891
Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-233
1631-073X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19891
identifier_str_mv Dickenstein, Alicia Marcela; Nill, Benjamin; Vergne, Michèle; A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes; Elsevier Masson; Comptes Rendus Mathematique; 350; 5-6; 3-2012; 229-233
1631-073X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.crma.2012.02.001
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1631073X12000398
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Masson
publisher.none.fl_str_mv Elsevier Masson
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981316895703040
score 12.48226