Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation
- Autores
- Auat Cheein, Fernando Alfredo; Pereira, Fernando M. Lobo; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.
Fil: Auat Cheein, Fernando Alfredo. Universidad Técnica Federico Santa María; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pereira, Fernando M. Lobo. Universidad de Porto; Portugal
Fil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina - Materia
-
SLAM
Monte Carlo uncertainty
Mobile robots
Map based navigation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188878
Ver los metadatos del registro completo
id |
CONICETDig_8d0da1b18623701c8a2bcf294feb53e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188878 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigationAuat Cheein, Fernando AlfredoPereira, Fernando M. LoboDi Sciascio, Fernando AgustínCarelli Albarracin, Ricardo OscarSLAMMonte Carlo uncertaintyMobile robotsMap based navigationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.Fil: Auat Cheein, Fernando Alfredo. Universidad Técnica Federico Santa María; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pereira, Fernando M. Lobo. Universidad de Porto; PortugalFil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaCambridge University Press2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188878Auat Cheein, Fernando Alfredo; Pereira, Fernando M. Lobo; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation; Cambridge University Press; Knowledge Engineering Review; 28; 1; 11-2012; 35-570269-8889CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0269888912000276info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/autonomous-simultaneous-localization-and-mapping-driven-by-monte-carlo-uncertainty-mapsbased-navigation/94978639E1F2C4A1DF8D162A46738D44info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:02Zoai:ri.conicet.gov.ar:11336/188878instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:03.172CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
title |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
spellingShingle |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation Auat Cheein, Fernando Alfredo SLAM Monte Carlo uncertainty Mobile robots Map based navigation |
title_short |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
title_full |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
title_fullStr |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
title_full_unstemmed |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
title_sort |
Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation |
dc.creator.none.fl_str_mv |
Auat Cheein, Fernando Alfredo Pereira, Fernando M. Lobo Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author |
Auat Cheein, Fernando Alfredo |
author_facet |
Auat Cheein, Fernando Alfredo Pereira, Fernando M. Lobo Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Pereira, Fernando M. Lobo Di Sciascio, Fernando Agustín Carelli Albarracin, Ricardo Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SLAM Monte Carlo uncertainty Mobile robots Map based navigation |
topic |
SLAM Monte Carlo uncertainty Mobile robots Map based navigation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work. Fil: Auat Cheein, Fernando Alfredo. Universidad Técnica Federico Santa María; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pereira, Fernando M. Lobo. Universidad de Porto; Portugal Fil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina |
description |
This paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188878 Auat Cheein, Fernando Alfredo; Pereira, Fernando M. Lobo; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation; Cambridge University Press; Knowledge Engineering Review; 28; 1; 11-2012; 35-57 0269-8889 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/188878 |
identifier_str_mv |
Auat Cheein, Fernando Alfredo; Pereira, Fernando M. Lobo; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation; Cambridge University Press; Knowledge Engineering Review; 28; 1; 11-2012; 35-57 0269-8889 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0269888912000276 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/autonomous-simultaneous-localization-and-mapping-driven-by-monte-carlo-uncertainty-mapsbased-navigation/94978639E1F2C4A1DF8D162A46738D44 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614083308945408 |
score |
13.070432 |