Dense monocular Simultaneous Localization and Mapping by direct surfel optimization
- Autores
- Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior.
Fil: Trabes, Emanuel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Dondo Gazzano, Julio Daniel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina
Fil: Sosa Paez, Carlos Federico. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina - Materia
-
SLAM
Visual Odometry
Monocular
Depth Estimation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157661
Ver los metadatos del registro completo
id |
CONICETDig_a03559cdd9701bc8484c6e22ea91f63d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157661 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimizationTrabes, EmanuelAvila, Luis OmarDondo Gazzano, Julio DanielSosa Paez, Carlos FedericoSLAMVisual OdometryMonocularDepth Estimationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior.Fil: Trabes, Emanuel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Dondo Gazzano, Julio Daniel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; ArgentinaFil: Sosa Paez, Carlos Federico. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; ArgentinaUniversidad Nacional Autónoma de México2021-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157661Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico; Dense monocular Simultaneous Localization and Mapping by direct surfel optimization; Universidad Nacional Autónoma de México; Journal of Applied Research and Technology; 19; 6; 31-12-2021; 644-6521665-64231665-6423CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jart.icat.unam.mx/index.php/jart/article/view/991info:eu-repo/semantics/altIdentifier/doi/10.22201/icat.24486736e.2021.19.6.991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:00Zoai:ri.conicet.gov.ar:11336/157661instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:01.126CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
title |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
spellingShingle |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization Trabes, Emanuel SLAM Visual Odometry Monocular Depth Estimation |
title_short |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
title_full |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
title_fullStr |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
title_full_unstemmed |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
title_sort |
Dense monocular Simultaneous Localization and Mapping by direct surfel optimization |
dc.creator.none.fl_str_mv |
Trabes, Emanuel Avila, Luis Omar Dondo Gazzano, Julio Daniel Sosa Paez, Carlos Federico |
author |
Trabes, Emanuel |
author_facet |
Trabes, Emanuel Avila, Luis Omar Dondo Gazzano, Julio Daniel Sosa Paez, Carlos Federico |
author_role |
author |
author2 |
Avila, Luis Omar Dondo Gazzano, Julio Daniel Sosa Paez, Carlos Federico |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SLAM Visual Odometry Monocular Depth Estimation |
topic |
SLAM Visual Odometry Monocular Depth Estimation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior. Fil: Trabes, Emanuel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Dondo Gazzano, Julio Daniel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina Fil: Sosa Paez, Carlos Federico. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina |
description |
This work presents a novel approach for monocular dense Simultaneous Localization and Mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group of surfels each having as parameters the position and normal. These parameters are directly estimated from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate pixel depths, without the need to use a computationally demanding depth regularization schema. This has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. The method was written in the GLSL shading language, allowing the use of GPU devices and achieve real-time processing. The method was tested on benchmark datasets, showing both its depth and normal estimation capacity, and its quality to recover the original scene. Results presented in this work showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead of the more commonly pixel depth independence and smoothness prior. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157661 Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico; Dense monocular Simultaneous Localization and Mapping by direct surfel optimization; Universidad Nacional Autónoma de México; Journal of Applied Research and Technology; 19; 6; 31-12-2021; 644-652 1665-6423 1665-6423 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157661 |
identifier_str_mv |
Trabes, Emanuel; Avila, Luis Omar; Dondo Gazzano, Julio Daniel; Sosa Paez, Carlos Federico; Dense monocular Simultaneous Localization and Mapping by direct surfel optimization; Universidad Nacional Autónoma de México; Journal of Applied Research and Technology; 19; 6; 31-12-2021; 644-652 1665-6423 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://jart.icat.unam.mx/index.php/jart/article/view/991 info:eu-repo/semantics/altIdentifier/doi/10.22201/icat.24486736e.2021.19.6.991 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Autónoma de México |
publisher.none.fl_str_mv |
Universidad Nacional Autónoma de México |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614210646966272 |
score |
13.070432 |