Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection
- Autores
- Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work.
Fil: Auat Cheein, F.. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Steiner, G.. Universidad Tecnológica Nacional; Argentina
Fil: Perez Paina, G.. Universidad Tecnológica Nacional; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
AGRICULTURAL MAPPING
MOBILE ROBOT
SLAM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/189712
Ver los metadatos del registro completo
id |
CONICETDig_05557dc07169f3a93b973de7db9abb56 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/189712 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detectionAuat Cheein, F.Steiner, G.Perez Paina, G.Carelli Albarracin, Ricardo OscarAGRICULTURAL MAPPINGMOBILE ROBOTSLAMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work.Fil: Auat Cheein, F.. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Steiner, G.. Universidad Tecnológica Nacional; ArgentinaFil: Perez Paina, G.. Universidad Tecnológica Nacional; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189712Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar; Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection; Elsevier; Computers and Eletronics in Agriculture; 78; 2; 9-2011; 195-2070168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169911001542info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2011.07.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:43Zoai:ri.conicet.gov.ar:11336/189712instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:43.775CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
title |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
spellingShingle |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection Auat Cheein, F. AGRICULTURAL MAPPING MOBILE ROBOT SLAM |
title_short |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
title_full |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
title_fullStr |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
title_full_unstemmed |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
title_sort |
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection |
dc.creator.none.fl_str_mv |
Auat Cheein, F. Steiner, G. Perez Paina, G. Carelli Albarracin, Ricardo Oscar |
author |
Auat Cheein, F. |
author_facet |
Auat Cheein, F. Steiner, G. Perez Paina, G. Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Steiner, G. Perez Paina, G. Carelli Albarracin, Ricardo Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
AGRICULTURAL MAPPING MOBILE ROBOT SLAM |
topic |
AGRICULTURAL MAPPING MOBILE ROBOT SLAM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work. Fil: Auat Cheein, F.. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Steiner, G.. Universidad Tecnológica Nacional; Argentina Fil: Perez Paina, G.. Universidad Tecnológica Nacional; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/189712 Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar; Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection; Elsevier; Computers and Eletronics in Agriculture; 78; 2; 9-2011; 195-207 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/189712 |
identifier_str_mv |
Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar; Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection; Elsevier; Computers and Eletronics in Agriculture; 78; 2; 9-2011; 195-207 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169911001542 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2011.07.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614132595163136 |
score |
13.070432 |