From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning
- Autores
- Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; Vanderplas, J.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.
Fil: Cabral, Juan Bautista. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Sánchez, Bruno Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Ramos Almendares, Felipe Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Gurovich, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Vanderplas, J.. University of Washington; Estados Unidos - Materia
-
ASTROINFORMATICS
FEATURE SELECTION
MACHINE LEARNING ALGORITHM
SOFTWARE AND ITS ENGINEERING
SOFTWARE POST-DEVELOPMENT ISSUE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87048
Ver los metadatos del registro completo
id |
CONICETDig_89ca7610dcf07caf9b9379de57a61a3b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87048 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learningCabral, Juan BautistaSánchez, Bruno OrlandoRamos Almendares, Felipe AlbertoGurovich, SebastianGranitto, Pablo MiguelVanderplas, J.ASTROINFORMATICSFEATURE SELECTIONMACHINE LEARNING ALGORITHMSOFTWARE AND ITS ENGINEERINGSOFTWARE POST-DEVELOPMENT ISSUEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.Fil: Cabral, Juan Bautista. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Sánchez, Bruno Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Ramos Almendares, Felipe Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Gurovich, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Vanderplas, J.. University of Washington; Estados UnidosElsevier2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87048Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; et al.; From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning; Elsevier; Astronomy and Computing; 25; 10-2018; 213-2202213-1337CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2213133718300581info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ascom.2018.09.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:51Zoai:ri.conicet.gov.ar:11336/87048instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:51.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
title |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
spellingShingle |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning Cabral, Juan Bautista ASTROINFORMATICS FEATURE SELECTION MACHINE LEARNING ALGORITHM SOFTWARE AND ITS ENGINEERING SOFTWARE POST-DEVELOPMENT ISSUE |
title_short |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
title_full |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
title_fullStr |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
title_full_unstemmed |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
title_sort |
From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning |
dc.creator.none.fl_str_mv |
Cabral, Juan Bautista Sánchez, Bruno Orlando Ramos Almendares, Felipe Alberto Gurovich, Sebastian Granitto, Pablo Miguel Vanderplas, J. |
author |
Cabral, Juan Bautista |
author_facet |
Cabral, Juan Bautista Sánchez, Bruno Orlando Ramos Almendares, Felipe Alberto Gurovich, Sebastian Granitto, Pablo Miguel Vanderplas, J. |
author_role |
author |
author2 |
Sánchez, Bruno Orlando Ramos Almendares, Felipe Alberto Gurovich, Sebastian Granitto, Pablo Miguel Vanderplas, J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ASTROINFORMATICS FEATURE SELECTION MACHINE LEARNING ALGORITHM SOFTWARE AND ITS ENGINEERING SOFTWARE POST-DEVELOPMENT ISSUE |
topic |
ASTROINFORMATICS FEATURE SELECTION MACHINE LEARNING ALGORITHM SOFTWARE AND ITS ENGINEERING SOFTWARE POST-DEVELOPMENT ISSUE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools. Fil: Cabral, Juan Bautista. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Sánchez, Bruno Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Ramos Almendares, Felipe Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Gurovich, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Vanderplas, J.. University of Washington; Estados Unidos |
description |
Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS, which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87048 Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; et al.; From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning; Elsevier; Astronomy and Computing; 25; 10-2018; 213-220 2213-1337 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87048 |
identifier_str_mv |
Cabral, Juan Bautista; Sánchez, Bruno Orlando; Ramos Almendares, Felipe Alberto; Gurovich, Sebastian; Granitto, Pablo Miguel; et al.; From FATS to feets: Further improvements to an astronomical feature extraction tool based on machine learning; Elsevier; Astronomy and Computing; 25; 10-2018; 213-220 2213-1337 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2213133718300581 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ascom.2018.09.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614154209460224 |
score |
13.070432 |