Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection
- Autores
- Lescano, Germán Ezequiel; Santana Mansilla, Pablo Fernando; Costaguta, Rosanna Nieves
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Faces and facial expressions recognition is an interesting topic for researchers in machine vision. Viola-Jones algorithm is the most spread algorithm for this task. Building a classification model for face recognition can take many years if the implementation of its training phase is not optimized. In this study, we analyze different implementations for the training phase. The aim was to reduce the time needed during training phase when using one computer with a cheap graphical processing unit (GPU). The execution times were analyzed and compared with previous studies. Results showed that combining C language, CUDA, etc., it is possible to reach acceptable times for training phase. Further research may involve the measurement of the performance of our approach computers with better GPU capacity and exploring a multi-GPU approach.
Fil: Lescano, Germán Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina
Fil: Santana Mansilla, Pablo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina
Fil: Costaguta, Rosanna Nieves. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina - Materia
-
ADABOOST
VIOLA-JONES ALGORITHM
FEATURE SELECTION
CUDA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74112
Ver los metadatos del registro completo
id |
CONICETDig_b7d58992c8cfdb86d2ed6b2864bc7659 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74112 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features SelectionLescano, Germán EzequielSantana Mansilla, Pablo FernandoCostaguta, Rosanna NievesADABOOSTVIOLA-JONES ALGORITHMFEATURE SELECTIONCUDAhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Faces and facial expressions recognition is an interesting topic for researchers in machine vision. Viola-Jones algorithm is the most spread algorithm for this task. Building a classification model for face recognition can take many years if the implementation of its training phase is not optimized. In this study, we analyze different implementations for the training phase. The aim was to reduce the time needed during training phase when using one computer with a cheap graphical processing unit (GPU). The execution times were analyzed and compared with previous studies. Results showed that combining C language, CUDA, etc., it is possible to reach acceptable times for training phase. Further research may involve the measurement of the performance of our approach computers with better GPU capacity and exploring a multi-GPU approach.Fil: Lescano, Germán Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; ArgentinaFil: Santana Mansilla, Pablo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; ArgentinaFil: Costaguta, Rosanna Nieves. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; ArgentinaUniversidad Nacional de La Plata. Facultad de Informática2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74112Lescano, Germán Ezequiel; Santana Mansilla, Pablo Fernando; Costaguta, Rosanna Nieves; Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 17; 1; 12-2017; 68-731666-60381666-6046CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/449info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:34Zoai:ri.conicet.gov.ar:11336/74112instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:34.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
title |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
spellingShingle |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection Lescano, Germán Ezequiel ADABOOST VIOLA-JONES ALGORITHM FEATURE SELECTION CUDA |
title_short |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
title_full |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
title_fullStr |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
title_full_unstemmed |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
title_sort |
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection |
dc.creator.none.fl_str_mv |
Lescano, Germán Ezequiel Santana Mansilla, Pablo Fernando Costaguta, Rosanna Nieves |
author |
Lescano, Germán Ezequiel |
author_facet |
Lescano, Germán Ezequiel Santana Mansilla, Pablo Fernando Costaguta, Rosanna Nieves |
author_role |
author |
author2 |
Santana Mansilla, Pablo Fernando Costaguta, Rosanna Nieves |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ADABOOST VIOLA-JONES ALGORITHM FEATURE SELECTION CUDA |
topic |
ADABOOST VIOLA-JONES ALGORITHM FEATURE SELECTION CUDA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Faces and facial expressions recognition is an interesting topic for researchers in machine vision. Viola-Jones algorithm is the most spread algorithm for this task. Building a classification model for face recognition can take many years if the implementation of its training phase is not optimized. In this study, we analyze different implementations for the training phase. The aim was to reduce the time needed during training phase when using one computer with a cheap graphical processing unit (GPU). The execution times were analyzed and compared with previous studies. Results showed that combining C language, CUDA, etc., it is possible to reach acceptable times for training phase. Further research may involve the measurement of the performance of our approach computers with better GPU capacity and exploring a multi-GPU approach. Fil: Lescano, Germán Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina Fil: Santana Mansilla, Pablo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina Fil: Costaguta, Rosanna Nieves. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías; Argentina |
description |
Faces and facial expressions recognition is an interesting topic for researchers in machine vision. Viola-Jones algorithm is the most spread algorithm for this task. Building a classification model for face recognition can take many years if the implementation of its training phase is not optimized. In this study, we analyze different implementations for the training phase. The aim was to reduce the time needed during training phase when using one computer with a cheap graphical processing unit (GPU). The execution times were analyzed and compared with previous studies. Results showed that combining C language, CUDA, etc., it is possible to reach acceptable times for training phase. Further research may involve the measurement of the performance of our approach computers with better GPU capacity and exploring a multi-GPU approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74112 Lescano, Germán Ezequiel; Santana Mansilla, Pablo Fernando; Costaguta, Rosanna Nieves; Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 17; 1; 12-2017; 68-73 1666-6038 1666-6046 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74112 |
identifier_str_mv |
Lescano, Germán Ezequiel; Santana Mansilla, Pablo Fernando; Costaguta, Rosanna Nieves; Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 17; 1; 12-2017; 68-73 1666-6038 1666-6046 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/449 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268675644588032 |
score |
13.13397 |