On p-compact mappings and the p-approximation property
- Autores
- Lassalle, S.; Turco, P.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The notion of p-compact sets arises naturally from Grothendieck's characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κ p). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κ p-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). © 2012 Elsevier Inc.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2012;389(2):1204-1221
- Materia
-
Approximation properties
Holomorphic mappings
P-Compact sets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v389_n2_p1204_Lassalle
Ver los metadatos del registro completo
id |
BDUBAFCEN_6c19f99b5b7e356532a9eb2be1ac6295 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v389_n2_p1204_Lassalle |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
On p-compact mappings and the p-approximation propertyLassalle, S.Turco, P.Approximation propertiesHolomorphic mappingsP-Compact setsThe notion of p-compact sets arises naturally from Grothendieck's characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κ p). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κ p-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). © 2012 Elsevier Inc.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p1204_LassalleJ. Math. Anal. Appl. 2012;389(2):1204-1221reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_0022247X_v389_n2_p1204_LassalleInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.481Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
On p-compact mappings and the p-approximation property |
title |
On p-compact mappings and the p-approximation property |
spellingShingle |
On p-compact mappings and the p-approximation property Lassalle, S. Approximation properties Holomorphic mappings P-Compact sets |
title_short |
On p-compact mappings and the p-approximation property |
title_full |
On p-compact mappings and the p-approximation property |
title_fullStr |
On p-compact mappings and the p-approximation property |
title_full_unstemmed |
On p-compact mappings and the p-approximation property |
title_sort |
On p-compact mappings and the p-approximation property |
dc.creator.none.fl_str_mv |
Lassalle, S. Turco, P. |
author |
Lassalle, S. |
author_facet |
Lassalle, S. Turco, P. |
author_role |
author |
author2 |
Turco, P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Approximation properties Holomorphic mappings P-Compact sets |
topic |
Approximation properties Holomorphic mappings P-Compact sets |
dc.description.none.fl_txt_mv |
The notion of p-compact sets arises naturally from Grothendieck's characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κ p). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κ p-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). © 2012 Elsevier Inc. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The notion of p-compact sets arises naturally from Grothendieck's characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κ p). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κ p-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). © 2012 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p1204_Lassalle |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p1204_Lassalle |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2012;389(2):1204-1221 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618740301299712 |
score |
13.070432 |