On p-compact mappings and the p-approximation property
- Autores
- Lassalle, Silvia Beatriz; Turco, Pablo Alejandro
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
APPROXIMATION PROPERTIES
HOLOMORPHIC MAPPINGS
P-COMPACT SETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160870
Ver los metadatos del registro completo
id |
CONICETDig_6cc16641254378d7a1efe9fe8df9665c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160870 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On p-compact mappings and the p-approximation propertyLassalle, Silvia BeatrizTurco, Pablo AlejandroAPPROXIMATION PROPERTIESHOLOMORPHIC MAPPINGSP-COMPACT SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160870Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-12210022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.058info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X12000042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:19Zoai:ri.conicet.gov.ar:11336/160870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:19.351CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On p-compact mappings and the p-approximation property |
title |
On p-compact mappings and the p-approximation property |
spellingShingle |
On p-compact mappings and the p-approximation property Lassalle, Silvia Beatriz APPROXIMATION PROPERTIES HOLOMORPHIC MAPPINGS P-COMPACT SETS |
title_short |
On p-compact mappings and the p-approximation property |
title_full |
On p-compact mappings and the p-approximation property |
title_fullStr |
On p-compact mappings and the p-approximation property |
title_full_unstemmed |
On p-compact mappings and the p-approximation property |
title_sort |
On p-compact mappings and the p-approximation property |
dc.creator.none.fl_str_mv |
Lassalle, Silvia Beatriz Turco, Pablo Alejandro |
author |
Lassalle, Silvia Beatriz |
author_facet |
Lassalle, Silvia Beatriz Turco, Pablo Alejandro |
author_role |
author |
author2 |
Turco, Pablo Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
APPROXIMATION PROPERTIES HOLOMORPHIC MAPPINGS P-COMPACT SETS |
topic |
APPROXIMATION PROPERTIES HOLOMORPHIC MAPPINGS P-COMPACT SETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160870 Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-1221 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160870 |
identifier_str_mv |
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-1221 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.058 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X12000042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083175735885824 |
score |
13.22299 |