On p-compact mappings and the p-approximation property

Autores
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
APPROXIMATION PROPERTIES
HOLOMORPHIC MAPPINGS
P-COMPACT SETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/160870

id CONICETDig_6cc16641254378d7a1efe9fe8df9665c
oai_identifier_str oai:ri.conicet.gov.ar:11336/160870
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On p-compact mappings and the p-approximation propertyLassalle, Silvia BeatrizTurco, Pablo AlejandroAPPROXIMATION PROPERTIESHOLOMORPHIC MAPPINGSP-COMPACT SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160870Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-12210022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.058info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X12000042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:19Zoai:ri.conicet.gov.ar:11336/160870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:19.351CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On p-compact mappings and the p-approximation property
title On p-compact mappings and the p-approximation property
spellingShingle On p-compact mappings and the p-approximation property
Lassalle, Silvia Beatriz
APPROXIMATION PROPERTIES
HOLOMORPHIC MAPPINGS
P-COMPACT SETS
title_short On p-compact mappings and the p-approximation property
title_full On p-compact mappings and the p-approximation property
title_fullStr On p-compact mappings and the p-approximation property
title_full_unstemmed On p-compact mappings and the p-approximation property
title_sort On p-compact mappings and the p-approximation property
dc.creator.none.fl_str_mv Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author Lassalle, Silvia Beatriz
author_facet Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author_role author
author2 Turco, Pablo Alejandro
author2_role author
dc.subject.none.fl_str_mv APPROXIMATION PROPERTIES
HOLOMORPHIC MAPPINGS
P-COMPACT SETS
topic APPROXIMATION PROPERTIES
HOLOMORPHIC MAPPINGS
P-COMPACT SETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/160870
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-1221
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/160870
identifier_str_mv Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-1221
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.12.058
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X12000042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083175735885824
score 13.22299