Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables

Autores
Lo Vercio, Lucas; del Fresno, Mariana; Vénere, Marcelo
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El presente trabajo constituye un aporte a la segmentación de las paredes arteriales en imágenes de ultrasonido intravascular (IVUS). Esta modalidad consiste en la obtención de imágenes axiales del interior de las arterias de mayor dimensión, mediante un catéter con un dispositivo ultrasónico que va capturando cuadros a medida que avanza sobre un alambre guía. Como todas las técnicas basadas en ultrasonido, las imágenes IVUS son altamente ruidosas y con información faltante, lo que constituye un reto para su segmentación automática y su uso clínico. Como en imágenes con alto nivel de ruido los métodos basados en intensidades suelen fracasar, se propone un método de segmentación automática del contorno arterial basado en análisis de textura y modelos deformables (también conocidos como snakes). Inicialmente se define un mapa de textura de la imagen IVUS original que simultáneamente la suaviza y realza el contorno arterial. Sobre esta nueva imagen, se aplica un algoritmo basado en modelos deformables que parte de la circunferencia correspondiente al catéter y obtiene por resultado un contorno aproximado de la pared arterial. Por otro lado, se procesa la imagen original con un filtro anisotrópico diseñado a medida de la imagen de ultrasonido, que reduce su ruido característico preservando bordes, y se procede a detectar las paredes interna y externa de la arteria mediante snakes, utilizando para ambas segmentaciones la aproximación inicial obtenida a partir del mapa de textura.
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: del Fresno, Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina
Materia
Ultrasonido intravascular
segmentación
textura
modelos deformables
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7014

id CONICETDig_87d9684cf0e8433590f6753cbadc567e
oai_identifier_str oai:ri.conicet.gov.ar:11336/7014
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformablesLo Vercio, Lucasdel Fresno, MarianaVénere, MarceloUltrasonido intravascularsegmentacióntexturamodelos deformableshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2El presente trabajo constituye un aporte a la segmentación de las paredes arteriales en imágenes de ultrasonido intravascular (IVUS). Esta modalidad consiste en la obtención de imágenes axiales del interior de las arterias de mayor dimensión, mediante un catéter con un dispositivo ultrasónico que va capturando cuadros a medida que avanza sobre un alambre guía. Como todas las técnicas basadas en ultrasonido, las imágenes IVUS son altamente ruidosas y con información faltante, lo que constituye un reto para su segmentación automática y su uso clínico. Como en imágenes con alto nivel de ruido los métodos basados en intensidades suelen fracasar, se propone un método de segmentación automática del contorno arterial basado en análisis de textura y modelos deformables (también conocidos como snakes). Inicialmente se define un mapa de textura de la imagen IVUS original que simultáneamente la suaviza y realza el contorno arterial. Sobre esta nueva imagen, se aplica un algoritmo basado en modelos deformables que parte de la circunferencia correspondiente al catéter y obtiene por resultado un contorno aproximado de la pared arterial. Por otro lado, se procesa la imagen original con un filtro anisotrópico diseñado a medida de la imagen de ultrasonido, que reduce su ruido característico preservando bordes, y se procede a detectar las paredes interna y externa de la arteria mediante snakes, utilizando para ambas segmentaciones la aproximación inicial obtenida a partir del mapa de textura.Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: del Fresno, Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; ArgentinaAsociación Argentina de Mecánica Computacional2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7014Lo Vercio, Lucas; del Fresno, Mariana; Vénere, Marcelo; Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXII; 11-2013; 3823-38341666-6070spainfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4586info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:58Zoai:ri.conicet.gov.ar:11336/7014instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:58.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
title Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
spellingShingle Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
Lo Vercio, Lucas
Ultrasonido intravascular
segmentación
textura
modelos deformables
title_short Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
title_full Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
title_fullStr Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
title_full_unstemmed Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
title_sort Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables
dc.creator.none.fl_str_mv Lo Vercio, Lucas
del Fresno, Mariana
Vénere, Marcelo
author Lo Vercio, Lucas
author_facet Lo Vercio, Lucas
del Fresno, Mariana
Vénere, Marcelo
author_role author
author2 del Fresno, Mariana
Vénere, Marcelo
author2_role author
author
dc.subject.none.fl_str_mv Ultrasonido intravascular
segmentación
textura
modelos deformables
topic Ultrasonido intravascular
segmentación
textura
modelos deformables
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv El presente trabajo constituye un aporte a la segmentación de las paredes arteriales en imágenes de ultrasonido intravascular (IVUS). Esta modalidad consiste en la obtención de imágenes axiales del interior de las arterias de mayor dimensión, mediante un catéter con un dispositivo ultrasónico que va capturando cuadros a medida que avanza sobre un alambre guía. Como todas las técnicas basadas en ultrasonido, las imágenes IVUS son altamente ruidosas y con información faltante, lo que constituye un reto para su segmentación automática y su uso clínico. Como en imágenes con alto nivel de ruido los métodos basados en intensidades suelen fracasar, se propone un método de segmentación automática del contorno arterial basado en análisis de textura y modelos deformables (también conocidos como snakes). Inicialmente se define un mapa de textura de la imagen IVUS original que simultáneamente la suaviza y realza el contorno arterial. Sobre esta nueva imagen, se aplica un algoritmo basado en modelos deformables que parte de la circunferencia correspondiente al catéter y obtiene por resultado un contorno aproximado de la pared arterial. Por otro lado, se procesa la imagen original con un filtro anisotrópico diseñado a medida de la imagen de ultrasonido, que reduce su ruido característico preservando bordes, y se procede a detectar las paredes interna y externa de la arteria mediante snakes, utilizando para ambas segmentaciones la aproximación inicial obtenida a partir del mapa de textura.
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: del Fresno, Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina
description El presente trabajo constituye un aporte a la segmentación de las paredes arteriales en imágenes de ultrasonido intravascular (IVUS). Esta modalidad consiste en la obtención de imágenes axiales del interior de las arterias de mayor dimensión, mediante un catéter con un dispositivo ultrasónico que va capturando cuadros a medida que avanza sobre un alambre guía. Como todas las técnicas basadas en ultrasonido, las imágenes IVUS son altamente ruidosas y con información faltante, lo que constituye un reto para su segmentación automática y su uso clínico. Como en imágenes con alto nivel de ruido los métodos basados en intensidades suelen fracasar, se propone un método de segmentación automática del contorno arterial basado en análisis de textura y modelos deformables (también conocidos como snakes). Inicialmente se define un mapa de textura de la imagen IVUS original que simultáneamente la suaviza y realza el contorno arterial. Sobre esta nueva imagen, se aplica un algoritmo basado en modelos deformables que parte de la circunferencia correspondiente al catéter y obtiene por resultado un contorno aproximado de la pared arterial. Por otro lado, se procesa la imagen original con un filtro anisotrópico diseñado a medida de la imagen de ultrasonido, que reduce su ruido característico preservando bordes, y se procede a detectar las paredes interna y externa de la arteria mediante snakes, utilizando para ambas segmentaciones la aproximación inicial obtenida a partir del mapa de textura.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7014
Lo Vercio, Lucas; del Fresno, Mariana; Vénere, Marcelo; Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXII; 11-2013; 3823-3834
1666-6070
url http://hdl.handle.net/11336/7014
identifier_str_mv Lo Vercio, Lucas; del Fresno, Mariana; Vénere, Marcelo; Segmentación automática de imágenes IVUS basada en indicadores de textura y modelos deformables; Asociación Argentina de Mecánica Computacional; Mecanica Computacional; XXXII; 11-2013; 3823-3834
1666-6070
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4586
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268765428908032
score 13.13397