An elementary proof of Sylvester's double sums for subresultants
- Autores
- D'Andrea, Carlos; Hong, Hoon; Krick, Teresa Elena Genoveva; Szanto, Agnes
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants.
Fil: D'Andrea, Carlos. Universidad de Barcelona; España
Fil: Hong, Hoon. North Carolina State University; Estados Unidos
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos - Materia
-
DOUBLE-SUM FORMULA
SUBRESULTANTS
VANDERMONDE DETERMINANT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127514
Ver los metadatos del registro completo
id |
CONICETDig_8797e4c34903a53baa8db6bbf35f7302 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127514 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An elementary proof of Sylvester's double sums for subresultantsD'Andrea, CarlosHong, HoonKrick, Teresa Elena GenovevaSzanto, AgnesDOUBLE-SUM FORMULASUBRESULTANTSVANDERMONDE DETERMINANThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants.Fil: D'Andrea, Carlos. Universidad de Barcelona; EspañaFil: Hong, Hoon. North Carolina State University; Estados UnidosFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosAcademic Press Ltd - Elsevier Science Ltd2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127514D'Andrea, Carlos; Hong, Hoon; Krick, Teresa Elena Genoveva; Szanto, Agnes; An elementary proof of Sylvester's double sums for subresultants; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 42; 3; 3-2007; 290-2970747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2006.09.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717106000897info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604418info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:03Zoai:ri.conicet.gov.ar:11336/127514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:04.133CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An elementary proof of Sylvester's double sums for subresultants |
title |
An elementary proof of Sylvester's double sums for subresultants |
spellingShingle |
An elementary proof of Sylvester's double sums for subresultants D'Andrea, Carlos DOUBLE-SUM FORMULA SUBRESULTANTS VANDERMONDE DETERMINANT |
title_short |
An elementary proof of Sylvester's double sums for subresultants |
title_full |
An elementary proof of Sylvester's double sums for subresultants |
title_fullStr |
An elementary proof of Sylvester's double sums for subresultants |
title_full_unstemmed |
An elementary proof of Sylvester's double sums for subresultants |
title_sort |
An elementary proof of Sylvester's double sums for subresultants |
dc.creator.none.fl_str_mv |
D'Andrea, Carlos Hong, Hoon Krick, Teresa Elena Genoveva Szanto, Agnes |
author |
D'Andrea, Carlos |
author_facet |
D'Andrea, Carlos Hong, Hoon Krick, Teresa Elena Genoveva Szanto, Agnes |
author_role |
author |
author2 |
Hong, Hoon Krick, Teresa Elena Genoveva Szanto, Agnes |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DOUBLE-SUM FORMULA SUBRESULTANTS VANDERMONDE DETERMINANT |
topic |
DOUBLE-SUM FORMULA SUBRESULTANTS VANDERMONDE DETERMINANT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. Fil: D'Andrea, Carlos. Universidad de Barcelona; España Fil: Hong, Hoon. North Carolina State University; Estados Unidos Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos |
description |
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester's formula was also recently proved by Lascoux and Pragacz using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determinants. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127514 D'Andrea, Carlos; Hong, Hoon; Krick, Teresa Elena Genoveva; Szanto, Agnes; An elementary proof of Sylvester's double sums for subresultants; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 42; 3; 3-2007; 290-297 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127514 |
identifier_str_mv |
D'Andrea, Carlos; Hong, Hoon; Krick, Teresa Elena Genoveva; Szanto, Agnes; An elementary proof of Sylvester's double sums for subresultants; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 42; 3; 3-2007; 290-297 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2006.09.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717106000897 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604418 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268951175757824 |
score |
13.13397 |