Multivariate subresultants in roots
- Autores
- D'Andrea, C.; Krick, T.; Szanto, A.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Algebra 2006;302(1):16-36
- Materia
-
Poisson product formula
Subresultants
Vandermonde determinants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v302_n1_p16_DAndrea
Ver los metadatos del registro completo
id |
BDUBAFCEN_1606141f51e4340683d750aa808c8c7c |
---|---|
oai_identifier_str |
paperaa:paper_00218693_v302_n1_p16_DAndrea |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Multivariate subresultants in rootsD'Andrea, C.Krick, T.Szanto, A.Poisson product formulaSubresultantsVandermonde determinantsWe give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndreaJ. Algebra 2006;302(1):16-36reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:28Zpaperaa:paper_00218693_v302_n1_p16_DAndreaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:32.868Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Multivariate subresultants in roots |
title |
Multivariate subresultants in roots |
spellingShingle |
Multivariate subresultants in roots D'Andrea, C. Poisson product formula Subresultants Vandermonde determinants |
title_short |
Multivariate subresultants in roots |
title_full |
Multivariate subresultants in roots |
title_fullStr |
Multivariate subresultants in roots |
title_full_unstemmed |
Multivariate subresultants in roots |
title_sort |
Multivariate subresultants in roots |
dc.creator.none.fl_str_mv |
D'Andrea, C. Krick, T. Szanto, A. |
author |
D'Andrea, C. |
author_facet |
D'Andrea, C. Krick, T. Szanto, A. |
author_role |
author |
author2 |
Krick, T. Szanto, A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Poisson product formula Subresultants Vandermonde determinants |
topic |
Poisson product formula Subresultants Vandermonde determinants |
dc.description.none.fl_txt_mv |
We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Algebra 2006;302(1):16-36 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340703656476672 |
score |
12.623145 |