Multivariate subresultants in roots

Autores
D'Andrea, C.; Krick, T.; Szanto, A.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2006;302(1):16-36
Materia
Poisson product formula
Subresultants
Vandermonde determinants
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v302_n1_p16_DAndrea

id BDUBAFCEN_1606141f51e4340683d750aa808c8c7c
oai_identifier_str paperaa:paper_00218693_v302_n1_p16_DAndrea
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Multivariate subresultants in rootsD'Andrea, C.Krick, T.Szanto, A.Poisson product formulaSubresultantsVandermonde determinantsWe give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndreaJ. Algebra 2006;302(1):16-36reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:28Zpaperaa:paper_00218693_v302_n1_p16_DAndreaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:32.868Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Multivariate subresultants in roots
title Multivariate subresultants in roots
spellingShingle Multivariate subresultants in roots
D'Andrea, C.
Poisson product formula
Subresultants
Vandermonde determinants
title_short Multivariate subresultants in roots
title_full Multivariate subresultants in roots
title_fullStr Multivariate subresultants in roots
title_full_unstemmed Multivariate subresultants in roots
title_sort Multivariate subresultants in roots
dc.creator.none.fl_str_mv D'Andrea, C.
Krick, T.
Szanto, A.
author D'Andrea, C.
author_facet D'Andrea, C.
Krick, T.
Szanto, A.
author_role author
author2 Krick, T.
Szanto, A.
author2_role author
author
dc.subject.none.fl_str_mv Poisson product formula
Subresultants
Vandermonde determinants
topic Poisson product formula
Subresultants
Vandermonde determinants
dc.description.none.fl_txt_mv We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea
url http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2006;302(1):16-36
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340703656476672
score 12.623145