Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients

Autores
Bollati, Julieta; Briozzo, Adriana Clotilde
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.
Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
DIFFUSION-CONVECTION EQUATION
FIXED POINT
RADIATIVE–CONVECTIVE CONDITION
SIMILARITY SOLUTIONS
STEFAN PROBLEM
VARIABLE THERMAL COEFFICIENTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/153324

id CONICETDig_8744891821ead44e16edef756423a907
oai_identifier_str oai:ri.conicet.gov.ar:11336/153324
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficientsBollati, JulietaBriozzo, Adriana ClotildeDIFFUSION-CONVECTION EQUATIONFIXED POINTRADIATIVE–CONVECTIVE CONDITIONSIMILARITY SOLUTIONSSTEFAN PROBLEMVARIABLE THERMAL COEFFICIENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaPergamon-Elsevier Science Ltd2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153324Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-100020-74621878-5638CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2021.103732info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:00Zoai:ri.conicet.gov.ar:11336/153324instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:01.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
title Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
spellingShingle Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
Bollati, Julieta
DIFFUSION-CONVECTION EQUATION
FIXED POINT
RADIATIVE–CONVECTIVE CONDITION
SIMILARITY SOLUTIONS
STEFAN PROBLEM
VARIABLE THERMAL COEFFICIENTS
title_short Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
title_full Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
title_fullStr Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
title_full_unstemmed Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
title_sort Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
dc.creator.none.fl_str_mv Bollati, Julieta
Briozzo, Adriana Clotilde
author Bollati, Julieta
author_facet Bollati, Julieta
Briozzo, Adriana Clotilde
author_role author
author2 Briozzo, Adriana Clotilde
author2_role author
dc.subject.none.fl_str_mv DIFFUSION-CONVECTION EQUATION
FIXED POINT
RADIATIVE–CONVECTIVE CONDITION
SIMILARITY SOLUTIONS
STEFAN PROBLEM
VARIABLE THERMAL COEFFICIENTS
topic DIFFUSION-CONVECTION EQUATION
FIXED POINT
RADIATIVE–CONVECTIVE CONDITION
SIMILARITY SOLUTIONS
STEFAN PROBLEM
VARIABLE THERMAL COEFFICIENTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.
Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/153324
Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-10
0020-7462
1878-5638
CONICET Digital
CONICET
url http://hdl.handle.net/11336/153324
identifier_str_mv Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-10
0020-7462
1878-5638
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2021.103732
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270141258137600
score 13.13397