Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients
- Autores
- Bollati, Julieta; Briozzo, Adriana Clotilde
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.
Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
DIFFUSION-CONVECTION EQUATION
FIXED POINT
RADIATIVE–CONVECTIVE CONDITION
SIMILARITY SOLUTIONS
STEFAN PROBLEM
VARIABLE THERMAL COEFFICIENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153324
Ver los metadatos del registro completo
id |
CONICETDig_8744891821ead44e16edef756423a907 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153324 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficientsBollati, JulietaBriozzo, Adriana ClotildeDIFFUSION-CONVECTION EQUATIONFIXED POINTRADIATIVE–CONVECTIVE CONDITIONSIMILARITY SOLUTIONSSTEFAN PROBLEMVARIABLE THERMAL COEFFICIENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided.Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaPergamon-Elsevier Science Ltd2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153324Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-100020-74621878-5638CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2021.103732info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:00Zoai:ri.conicet.gov.ar:11336/153324instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:01.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
title |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
spellingShingle |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients Bollati, Julieta DIFFUSION-CONVECTION EQUATION FIXED POINT RADIATIVE–CONVECTIVE CONDITION SIMILARITY SOLUTIONS STEFAN PROBLEM VARIABLE THERMAL COEFFICIENTS |
title_short |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
title_full |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
title_fullStr |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
title_full_unstemmed |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
title_sort |
Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients |
dc.creator.none.fl_str_mv |
Bollati, Julieta Briozzo, Adriana Clotilde |
author |
Bollati, Julieta |
author_facet |
Bollati, Julieta Briozzo, Adriana Clotilde |
author_role |
author |
author2 |
Briozzo, Adriana Clotilde |
author2_role |
author |
dc.subject.none.fl_str_mv |
DIFFUSION-CONVECTION EQUATION FIXED POINT RADIATIVE–CONVECTIVE CONDITION SIMILARITY SOLUTIONS STEFAN PROBLEM VARIABLE THERMAL COEFFICIENTS |
topic |
DIFFUSION-CONVECTION EQUATION FIXED POINT RADIATIVE–CONVECTIVE CONDITION SIMILARITY SOLUTIONS STEFAN PROBLEM VARIABLE THERMAL COEFFICIENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided. Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
description |
Different one-phase Stefan problems for a semi-infinite slab are considered, involving a moving phase change material as well as temperature dependent thermal coefficients. Existence of at least one similarity solution is proved imposing a Dirichlet, Neumann, Robin or radiative–convective boundary condition at the fixed face. The velocity that arises in the convective term of the diffusion–convection equation is assumed to depend on temperature and time. In each case, an equivalent ordinary differential problem is obtained giving rise to a system of an integral equation coupled with a condition for the parameter that characterizes the free boundary, which is solved through a double-fixed point analysis. Some solutions for particular thermal coefficients are provided. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153324 Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-10 0020-7462 1878-5638 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153324 |
identifier_str_mv |
Bollati, Julieta; Briozzo, Adriana Clotilde; Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 134; 9-2021; 1-10 0020-7462 1878-5638 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2021.103732 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270141258137600 |
score |
13.13397 |