Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions

Autores
Tarzia, Domingo Alberto
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981), 491-497 is also recovered when a heat flux condition was imposed at the fixed face.
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Lamé-Clapeyron-Stefan Problem
PCM
Free boundary problem
Explicit solutions
Similarity solutions
Neumann solution
Convective boundary condition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53880

id CONICETDig_0d51aabeaf0d05533c3514eda03beac9
oai_identifier_str oai:ri.conicet.gov.ar:11336/53880
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditionsTarzia, Domingo AlbertoLamé-Clapeyron-Stefan ProblemPCMFree boundary problemExplicit solutionsSimilarity solutionsNeumann solutionConvective boundary conditionhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981), 491-497 is also recovered when a heat flux condition was imposed at the fixed face.Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaVinca Inst Nuclear Sci2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53880Tarzia, Domingo Alberto; Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions; Vinca Inst Nuclear Sci; Thermal Science; 21; 1 Part A; 1-2017; 187-1970354-9836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2298/TSCI140607003Tinfo:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361500003T&AspxAutoDetectCookieSupport=1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:13Zoai:ri.conicet.gov.ar:11336/53880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:14.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
title Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
spellingShingle Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
Tarzia, Domingo Alberto
Lamé-Clapeyron-Stefan Problem
PCM
Free boundary problem
Explicit solutions
Similarity solutions
Neumann solution
Convective boundary condition
title_short Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
title_full Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
title_fullStr Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
title_full_unstemmed Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
title_sort Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions
dc.creator.none.fl_str_mv Tarzia, Domingo Alberto
author Tarzia, Domingo Alberto
author_facet Tarzia, Domingo Alberto
author_role author
dc.subject.none.fl_str_mv Lamé-Clapeyron-Stefan Problem
PCM
Free boundary problem
Explicit solutions
Similarity solutions
Neumann solution
Convective boundary condition
topic Lamé-Clapeyron-Stefan Problem
PCM
Free boundary problem
Explicit solutions
Similarity solutions
Neumann solution
Convective boundary condition
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981), 491-497 is also recovered when a heat flux condition was imposed at the fixed face.
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981), 491-497 is also recovered when a heat flux condition was imposed at the fixed face.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53880
Tarzia, Domingo Alberto; Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions; Vinca Inst Nuclear Sci; Thermal Science; 21; 1 Part A; 1-2017; 187-197
0354-9836
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53880
identifier_str_mv Tarzia, Domingo Alberto; Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions; Vinca Inst Nuclear Sci; Thermal Science; 21; 1 Part A; 1-2017; 187-197
0354-9836
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2298/TSCI140607003T
info:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361500003T&AspxAutoDetectCookieSupport=1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Vinca Inst Nuclear Sci
publisher.none.fl_str_mv Vinca Inst Nuclear Sci
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269210218070016
score 13.13397