Weighted inequalities for a maximal function on the real line
- Autores
- Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
Weighted inequalities
maximal function
real line - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100609
Ver los metadatos del registro completo
id |
CONICETDig_85d470d34e71615384c70e21465e9a27 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100609 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted inequalities for a maximal function on the real lineBernardis, Ana LuciaMartín Reyes, Francisco JavierWeighted inequalitiesmaximal functionreal linehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaRoyal Society of Edinburgh2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100609Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Weighted inequalities for a maximal function on the real line; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 131; 2; 12-2001; 267-2770308-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0308210500000871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:57Zoai:ri.conicet.gov.ar:11336/100609instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:57.792CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted inequalities for a maximal function on the real line |
title |
Weighted inequalities for a maximal function on the real line |
spellingShingle |
Weighted inequalities for a maximal function on the real line Bernardis, Ana Lucia Weighted inequalities maximal function real line |
title_short |
Weighted inequalities for a maximal function on the real line |
title_full |
Weighted inequalities for a maximal function on the real line |
title_fullStr |
Weighted inequalities for a maximal function on the real line |
title_full_unstemmed |
Weighted inequalities for a maximal function on the real line |
title_sort |
Weighted inequalities for a maximal function on the real line |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author_role |
author |
author2 |
Martín Reyes, Francisco Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Weighted inequalities maximal function real line |
topic |
Weighted inequalities maximal function real line |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx. Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
description |
We consider the maximal operator defined on the real line by which is related to the Cesàro convergence of the singular integrals. We characterize the weights w for which Mα is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100609 Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Weighted inequalities for a maximal function on the real line; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 131; 2; 12-2001; 267-277 0308-2105 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100609 |
identifier_str_mv |
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Weighted inequalities for a maximal function on the real line; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 131; 2; 12-2001; 267-277 0308-2105 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0308210500000871 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Edinburgh |
publisher.none.fl_str_mv |
Royal Society of Edinburgh |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614463468077056 |
score |
13.070432 |