Discrete gradient flows for shape optimization and applications
- Autores
- Dogan, G.; Morin, Pedro; Nochetto, R.H.; Verani, M.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a variational framework for shape optimization problems that establishes clear and explicit connections among the continuous formulation, its full discretization and the resulting linear algebraic systems. Our approach hinges on the following essential features: shape differential calculus, a semi-implicit time discretization and a finite element method for space discretization. We use shape differential calculus to express variations of bulk and surface energies with respect to domain changes. The semi-implicit time discretization allows us to track the domain boundary without an explicit parametrization, and has the flexibility to choose different descent directions by varying the scalar product used for the computation of normal velocity. We propose a Schur complement approach to solve the resulting linear systems efficiently. We discuss applications of this framework to image segmentation, optimal shape design for PDE, and surface diffusion, along with the choice of suitable scalar products in each case. We illustrate the method with several numerical experiments, some developing pinch-off and topological changes in finite time.
Fil: Dogan, G.. University of Maryland; Estados Unidos
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, R.H.. University of Maryland; Estados Unidos
Fil: Verani, M.. Politecnico di Milano; Italia - Materia
-
FINITE ELEMENTS
GRADIENT FLOW
IMAGE SEGMENTATION
SCALAR PRODUCT
SEMI-IMPLICIT DISCRETIZATION
SHAPE OPTIMIZATION
SURFACE DIFFUSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84269
Ver los metadatos del registro completo
id |
CONICETDig_849ca916030f2de7edb3d81e22d9efa0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84269 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discrete gradient flows for shape optimization and applicationsDogan, G.Morin, PedroNochetto, R.H.Verani, M.FINITE ELEMENTSGRADIENT FLOWIMAGE SEGMENTATIONSCALAR PRODUCTSEMI-IMPLICIT DISCRETIZATIONSHAPE OPTIMIZATIONSURFACE DIFFUSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a variational framework for shape optimization problems that establishes clear and explicit connections among the continuous formulation, its full discretization and the resulting linear algebraic systems. Our approach hinges on the following essential features: shape differential calculus, a semi-implicit time discretization and a finite element method for space discretization. We use shape differential calculus to express variations of bulk and surface energies with respect to domain changes. The semi-implicit time discretization allows us to track the domain boundary without an explicit parametrization, and has the flexibility to choose different descent directions by varying the scalar product used for the computation of normal velocity. We propose a Schur complement approach to solve the resulting linear systems efficiently. We discuss applications of this framework to image segmentation, optimal shape design for PDE, and surface diffusion, along with the choice of suitable scalar products in each case. We illustrate the method with several numerical experiments, some developing pinch-off and topological changes in finite time.Fil: Dogan, G.. University of Maryland; Estados UnidosFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, R.H.. University of Maryland; Estados UnidosFil: Verani, M.. Politecnico di Milano; ItaliaElsevier Science Sa2007-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84269Dogan, G.; Morin, Pedro; Nochetto, R.H.; Verani, M.; Discrete gradient flows for shape optimization and applications; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 196; 37-40 SPEC. ISS.; 8-2007; 3898-39140045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2006.10.046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:56Zoai:ri.conicet.gov.ar:11336/84269instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:57.153CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discrete gradient flows for shape optimization and applications |
title |
Discrete gradient flows for shape optimization and applications |
spellingShingle |
Discrete gradient flows for shape optimization and applications Dogan, G. FINITE ELEMENTS GRADIENT FLOW IMAGE SEGMENTATION SCALAR PRODUCT SEMI-IMPLICIT DISCRETIZATION SHAPE OPTIMIZATION SURFACE DIFFUSION |
title_short |
Discrete gradient flows for shape optimization and applications |
title_full |
Discrete gradient flows for shape optimization and applications |
title_fullStr |
Discrete gradient flows for shape optimization and applications |
title_full_unstemmed |
Discrete gradient flows for shape optimization and applications |
title_sort |
Discrete gradient flows for shape optimization and applications |
dc.creator.none.fl_str_mv |
Dogan, G. Morin, Pedro Nochetto, R.H. Verani, M. |
author |
Dogan, G. |
author_facet |
Dogan, G. Morin, Pedro Nochetto, R.H. Verani, M. |
author_role |
author |
author2 |
Morin, Pedro Nochetto, R.H. Verani, M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FINITE ELEMENTS GRADIENT FLOW IMAGE SEGMENTATION SCALAR PRODUCT SEMI-IMPLICIT DISCRETIZATION SHAPE OPTIMIZATION SURFACE DIFFUSION |
topic |
FINITE ELEMENTS GRADIENT FLOW IMAGE SEGMENTATION SCALAR PRODUCT SEMI-IMPLICIT DISCRETIZATION SHAPE OPTIMIZATION SURFACE DIFFUSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a variational framework for shape optimization problems that establishes clear and explicit connections among the continuous formulation, its full discretization and the resulting linear algebraic systems. Our approach hinges on the following essential features: shape differential calculus, a semi-implicit time discretization and a finite element method for space discretization. We use shape differential calculus to express variations of bulk and surface energies with respect to domain changes. The semi-implicit time discretization allows us to track the domain boundary without an explicit parametrization, and has the flexibility to choose different descent directions by varying the scalar product used for the computation of normal velocity. We propose a Schur complement approach to solve the resulting linear systems efficiently. We discuss applications of this framework to image segmentation, optimal shape design for PDE, and surface diffusion, along with the choice of suitable scalar products in each case. We illustrate the method with several numerical experiments, some developing pinch-off and topological changes in finite time. Fil: Dogan, G.. University of Maryland; Estados Unidos Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nochetto, R.H.. University of Maryland; Estados Unidos Fil: Verani, M.. Politecnico di Milano; Italia |
description |
We present a variational framework for shape optimization problems that establishes clear and explicit connections among the continuous formulation, its full discretization and the resulting linear algebraic systems. Our approach hinges on the following essential features: shape differential calculus, a semi-implicit time discretization and a finite element method for space discretization. We use shape differential calculus to express variations of bulk and surface energies with respect to domain changes. The semi-implicit time discretization allows us to track the domain boundary without an explicit parametrization, and has the flexibility to choose different descent directions by varying the scalar product used for the computation of normal velocity. We propose a Schur complement approach to solve the resulting linear systems efficiently. We discuss applications of this framework to image segmentation, optimal shape design for PDE, and surface diffusion, along with the choice of suitable scalar products in each case. We illustrate the method with several numerical experiments, some developing pinch-off and topological changes in finite time. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84269 Dogan, G.; Morin, Pedro; Nochetto, R.H.; Verani, M.; Discrete gradient flows for shape optimization and applications; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 196; 37-40 SPEC. ISS.; 8-2007; 3898-3914 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84269 |
identifier_str_mv |
Dogan, G.; Morin, Pedro; Nochetto, R.H.; Verani, M.; Discrete gradient flows for shape optimization and applications; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 196; 37-40 SPEC. ISS.; 8-2007; 3898-3914 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2006.10.046 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613231714238464 |
score |
13.070432 |