Compactness and dichotomy in nonlocal shape optimization
- Autores
- Parini, E.; Salort, Ariel Martin
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions' concentration-compactness principle, we prove that either an optimal shape exists or there exists a minimizing sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case.
Fil: Parini, E.. Aix Marseille Université; Francia
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
FRACTIONAL DIFFERENTIAL EQUATIONS
SHAPE OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143906
Ver los metadatos del registro completo
id |
CONICETDig_a240ee840a88ec94c753c554206333b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143906 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compactness and dichotomy in nonlocal shape optimizationParini, E.Salort, Ariel MartinFRACTIONAL DIFFERENTIAL EQUATIONSSHAPE OPTIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions' concentration-compactness principle, we prove that either an optimal shape exists or there exists a minimizing sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case.Fil: Parini, E.. Aix Marseille Université; FranciaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWiley VCH Verlag2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143906Parini, E.; Salort, Ariel Martin; Compactness and dichotomy in nonlocal shape optimization; Wiley VCH Verlag; Mathematische Nachrichten; 293; 11; 11-2020; 2208-22320025-584XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201800234info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.201800234info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1806.01165info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:27Zoai:ri.conicet.gov.ar:11336/143906instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:27.809CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compactness and dichotomy in nonlocal shape optimization |
title |
Compactness and dichotomy in nonlocal shape optimization |
spellingShingle |
Compactness and dichotomy in nonlocal shape optimization Parini, E. FRACTIONAL DIFFERENTIAL EQUATIONS SHAPE OPTIMIZATION |
title_short |
Compactness and dichotomy in nonlocal shape optimization |
title_full |
Compactness and dichotomy in nonlocal shape optimization |
title_fullStr |
Compactness and dichotomy in nonlocal shape optimization |
title_full_unstemmed |
Compactness and dichotomy in nonlocal shape optimization |
title_sort |
Compactness and dichotomy in nonlocal shape optimization |
dc.creator.none.fl_str_mv |
Parini, E. Salort, Ariel Martin |
author |
Parini, E. |
author_facet |
Parini, E. Salort, Ariel Martin |
author_role |
author |
author2 |
Salort, Ariel Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONAL DIFFERENTIAL EQUATIONS SHAPE OPTIMIZATION |
topic |
FRACTIONAL DIFFERENTIAL EQUATIONS SHAPE OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions' concentration-compactness principle, we prove that either an optimal shape exists or there exists a minimizing sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case. Fil: Parini, E.. Aix Marseille Université; Francia Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions' concentration-compactness principle, we prove that either an optimal shape exists or there exists a minimizing sequence consisting of two “pieces” whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143906 Parini, E.; Salort, Ariel Martin; Compactness and dichotomy in nonlocal shape optimization; Wiley VCH Verlag; Mathematische Nachrichten; 293; 11; 11-2020; 2208-2232 0025-584X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143906 |
identifier_str_mv |
Parini, E.; Salort, Ariel Martin; Compactness and dichotomy in nonlocal shape optimization; Wiley VCH Verlag; Mathematische Nachrichten; 293; 11; 11-2020; 2208-2232 0025-584X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201800234 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.201800234 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1806.01165 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269462744530944 |
score |
13.13397 |