A variational shape optimization approach for image segmentation with a Mumford-Shah functional
- Autores
- Do?an, Günay; Morin, Pedro; Nochetto, Ricardo Horacio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a novel computational method for a Mumford-Shah functional, which decomposes a given image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time discretizations that linearize the problem and space discretization by continuous piecewise linear finite elements. The method incorporates topological changes, such as splitting and merging for detection of multiple objects, space-time adaptivity, and a coarse-tofine approach to process large images efficiently. We present several simulations that illustrate the performance of the method and investigate the model sensitivity to various parameters.
Fil: Do?an, Günay. University of Pennsylvania; Estados Unidos
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos - Materia
-
FINITE ELEMENT METHOD
IMAGE SEGMENTATION
MUMFORD-SHAH
SHAPE OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84059
Ver los metadatos del registro completo
id |
CONICETDig_b209de03a9d6e2956868e897cf52697e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84059 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A variational shape optimization approach for image segmentation with a Mumford-Shah functionalDo?an, GünayMorin, PedroNochetto, Ricardo HoracioFINITE ELEMENT METHODIMAGE SEGMENTATIONMUMFORD-SHAHSHAPE OPTIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce a novel computational method for a Mumford-Shah functional, which decomposes a given image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time discretizations that linearize the problem and space discretization by continuous piecewise linear finite elements. The method incorporates topological changes, such as splitting and merging for detection of multiple objects, space-time adaptivity, and a coarse-tofine approach to process large images efficiently. We present several simulations that illustrate the performance of the method and investigate the model sensitivity to various parameters.Fil: Do?an, Günay. University of Pennsylvania; Estados UnidosFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosSociety for Industrial and Applied Mathematics2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84059Do?an, Günay; Morin, Pedro; Nochetto, Ricardo Horacio; A variational shape optimization approach for image segmentation with a Mumford-Shah functional; Society for Industrial and Applied Mathematics; SIAM Journal on Scientific Computing; 30; 6; 12-2008; 3028-30491064-8275CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/070692066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:34Zoai:ri.conicet.gov.ar:11336/84059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:34.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
title |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
spellingShingle |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional Do?an, Günay FINITE ELEMENT METHOD IMAGE SEGMENTATION MUMFORD-SHAH SHAPE OPTIMIZATION |
title_short |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
title_full |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
title_fullStr |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
title_full_unstemmed |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
title_sort |
A variational shape optimization approach for image segmentation with a Mumford-Shah functional |
dc.creator.none.fl_str_mv |
Do?an, Günay Morin, Pedro Nochetto, Ricardo Horacio |
author |
Do?an, Günay |
author_facet |
Do?an, Günay Morin, Pedro Nochetto, Ricardo Horacio |
author_role |
author |
author2 |
Morin, Pedro Nochetto, Ricardo Horacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FINITE ELEMENT METHOD IMAGE SEGMENTATION MUMFORD-SHAH SHAPE OPTIMIZATION |
topic |
FINITE ELEMENT METHOD IMAGE SEGMENTATION MUMFORD-SHAH SHAPE OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a novel computational method for a Mumford-Shah functional, which decomposes a given image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time discretizations that linearize the problem and space discretization by continuous piecewise linear finite elements. The method incorporates topological changes, such as splitting and merging for detection of multiple objects, space-time adaptivity, and a coarse-tofine approach to process large images efficiently. We present several simulations that illustrate the performance of the method and investigate the model sensitivity to various parameters. Fil: Do?an, Günay. University of Pennsylvania; Estados Unidos Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos |
description |
We introduce a novel computational method for a Mumford-Shah functional, which decomposes a given image into smooth regions separated by closed curves. Casting this as a shape optimization problem, we develop a gradient descent approach at the continuous level that yields nonlinear PDE flows. We propose time discretizations that linearize the problem and space discretization by continuous piecewise linear finite elements. The method incorporates topological changes, such as splitting and merging for detection of multiple objects, space-time adaptivity, and a coarse-tofine approach to process large images efficiently. We present several simulations that illustrate the performance of the method and investigate the model sensitivity to various parameters. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84059 Do?an, Günay; Morin, Pedro; Nochetto, Ricardo Horacio; A variational shape optimization approach for image segmentation with a Mumford-Shah functional; Society for Industrial and Applied Mathematics; SIAM Journal on Scientific Computing; 30; 6; 12-2008; 3028-3049 1064-8275 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84059 |
identifier_str_mv |
Do?an, Günay; Morin, Pedro; Nochetto, Ricardo Horacio; A variational shape optimization approach for image segmentation with a Mumford-Shah functional; Society for Industrial and Applied Mathematics; SIAM Journal on Scientific Computing; 30; 6; 12-2008; 3028-3049 1064-8275 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/070692066 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613611926847488 |
score |
13.070432 |