Weighted a priori estimates for elliptic equations
- Autores
- Cejas, María Eugenia; Durán, Ricardo Guillermo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class.
Facultad de Ciencias Exactas - Materia
-
Matemática
Ciencias Exactas
Elliptic equations
Weighted a priori estimates - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/98015
Ver los metadatos del registro completo
id |
SEDICI_57204ccc355d26054ae27864dfc0be2d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/98015 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Weighted a priori estimates for elliptic equationsCejas, María EugeniaDurán, Ricardo GuillermoMatemáticaCiencias ExactasElliptic equationsWeighted a priori estimatesWe give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class A<sub>p</sub>. The argument is a generalization to bounded domains of the one used in R<sup>n</sup> to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the A<sub>p</sub> condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local A<sub>p</sub> class.Facultad de Ciencias Exactas2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf13-24http://sedici.unlp.edu.ar/handle/10915/98015enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/84701info:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm8704-6-2017info:eu-repo/semantics/altIdentifier/issn/0039-3223info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8704-6-2017info:eu-repo/semantics/altIdentifier/arxiv/1711.00879info:eu-repo/semantics/altIdentifier/hdl/11336/84701info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:46Zoai:sedici.unlp.edu.ar:10915/98015Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:46.251SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates for elliptic equations |
title |
Weighted a priori estimates for elliptic equations |
spellingShingle |
Weighted a priori estimates for elliptic equations Cejas, María Eugenia Matemática Ciencias Exactas Elliptic equations Weighted a priori estimates |
title_short |
Weighted a priori estimates for elliptic equations |
title_full |
Weighted a priori estimates for elliptic equations |
title_fullStr |
Weighted a priori estimates for elliptic equations |
title_full_unstemmed |
Weighted a priori estimates for elliptic equations |
title_sort |
Weighted a priori estimates for elliptic equations |
dc.creator.none.fl_str_mv |
Cejas, María Eugenia Durán, Ricardo Guillermo |
author |
Cejas, María Eugenia |
author_facet |
Cejas, María Eugenia Durán, Ricardo Guillermo |
author_role |
author |
author2 |
Durán, Ricardo Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática Ciencias Exactas Elliptic equations Weighted a priori estimates |
topic |
Matemática Ciencias Exactas Elliptic equations Weighted a priori estimates |
dc.description.none.fl_txt_mv |
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class A<sub>p</sub>. The argument is a generalization to bounded domains of the one used in R<sup>n</sup> to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the A<sub>p</sub> condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local A<sub>p</sub> class. Facultad de Ciencias Exactas |
description |
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class A<sub>p</sub>. The argument is a generalization to bounded domains of the one used in R<sup>n</sup> to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the A<sub>p</sub> condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local A<sub>p</sub> class. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/98015 |
url |
http://sedici.unlp.edu.ar/handle/10915/98015 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/84701 info:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm8704-6-2017 info:eu-repo/semantics/altIdentifier/issn/0039-3223 info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8704-6-2017 info:eu-repo/semantics/altIdentifier/arxiv/1711.00879 info:eu-repo/semantics/altIdentifier/hdl/11336/84701 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 13-24 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260409819594752 |
score |
13.13397 |