Weighted Norm Inequalities for Rough Singular Integral Operators
- Autores
- Kangwei, Li; Pérez, Carlos; Rivera Ríos, Israel Pablo; Roncal, Luz
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals TΩ with Ω ∈ L∞(Sn-1) and the Bochner–Riesz multiplier at the critical index B(n-1)/2. More precisely, we prove qualitative and quantitative versions of Coifman–Fefferman type inequalities and their vector-valued extensions, weighted Ap- A∞ strong and weak type inequalities for 1 < p< ∞, and A1- A∞ type weak (1, 1) estimates. Moreover, Fefferman–Stein type inequalities are obtained, proving in this way a conjecture raised by the second-named author in the 1990s. As a corollary, we obtain the weighted A1- A∞ type estimates. Finally, we study rough homogenous singular integrals with a kernel involving a function Ω ∈ Lq(Sn-1) , 1 < q< ∞, and provide Fefferman–Stein inequalities too. The arguments used for our proofs combine several tools: a recent sparse domination result by Conde–Alonso et al. (Anal PDE 10(5):1255–1284, 2017), results by the first author (Collect Math 68:129–144, 2017), suitable adaptations of Rubio de Francia algorithm, the extrapolation theorems for A∞ weights (Cruz-Uribe et al. in J Funct Anal 213:412–439, 2004, Curbera et al. in Adv Math 203:256–318, 2006), and ideas contained in previous works by Seeger (J Am Math Soc 9:95–105 1996) and Fan and Sato (Tohoku Math J 53:265–284, 2001).
Fil: Kangwei, Li. Basque Center for Applied Mathematics; España
Fil: Pérez, Carlos. Universidad del País Vasco; España
Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad del País Vasco; España
Fil: Roncal, Luz. Basque Center for Applied Mathematics; España - Materia
-
FEFFERMAN–STEIN INEQUALITIES
ROUGH OPERATORS
RUBIO DE FRANCIA ALGORITHM
SPARSE OPERATORS
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85550
Ver los metadatos del registro completo
id |
CONICETDig_8bd7384d435fc290b0bd4e0ccb0ed777 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted Norm Inequalities for Rough Singular Integral OperatorsKangwei, LiPérez, CarlosRivera Ríos, Israel PabloRoncal, LuzFEFFERMAN–STEIN INEQUALITIESROUGH OPERATORSRUBIO DE FRANCIA ALGORITHMSPARSE OPERATORSWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals TΩ with Ω ∈ L∞(Sn-1) and the Bochner–Riesz multiplier at the critical index B(n-1)/2. More precisely, we prove qualitative and quantitative versions of Coifman–Fefferman type inequalities and their vector-valued extensions, weighted Ap- A∞ strong and weak type inequalities for 1 < p< ∞, and A1- A∞ type weak (1, 1) estimates. Moreover, Fefferman–Stein type inequalities are obtained, proving in this way a conjecture raised by the second-named author in the 1990s. As a corollary, we obtain the weighted A1- A∞ type estimates. Finally, we study rough homogenous singular integrals with a kernel involving a function Ω ∈ Lq(Sn-1) , 1 < q< ∞, and provide Fefferman–Stein inequalities too. The arguments used for our proofs combine several tools: a recent sparse domination result by Conde–Alonso et al. (Anal PDE 10(5):1255–1284, 2017), results by the first author (Collect Math 68:129–144, 2017), suitable adaptations of Rubio de Francia algorithm, the extrapolation theorems for A∞ weights (Cruz-Uribe et al. in J Funct Anal 213:412–439, 2004, Curbera et al. in Adv Math 203:256–318, 2006), and ideas contained in previous works by Seeger (J Am Math Soc 9:95–105 1996) and Fan and Sato (Tohoku Math J 53:265–284, 2001).Fil: Kangwei, Li. Basque Center for Applied Mathematics; EspañaFil: Pérez, Carlos. Universidad del País Vasco; EspañaFil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad del País Vasco; EspañaFil: Roncal, Luz. Basque Center for Applied Mathematics; EspañaSpringer2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85550Kangwei, Li; Pérez, Carlos; Rivera Ríos, Israel Pablo; Roncal, Luz; Weighted Norm Inequalities for Rough Singular Integral Operators; Springer; The Journal Of Geometric Analysis; 29; 3; 7-2019; 2526-25641050-69261559-002XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-018-0085-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-018-0085-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1701.05170info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:22Zoai:ri.conicet.gov.ar:11336/85550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:22.956CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted Norm Inequalities for Rough Singular Integral Operators |
title |
Weighted Norm Inequalities for Rough Singular Integral Operators |
spellingShingle |
Weighted Norm Inequalities for Rough Singular Integral Operators Kangwei, Li FEFFERMAN–STEIN INEQUALITIES ROUGH OPERATORS RUBIO DE FRANCIA ALGORITHM SPARSE OPERATORS WEIGHTS |
title_short |
Weighted Norm Inequalities for Rough Singular Integral Operators |
title_full |
Weighted Norm Inequalities for Rough Singular Integral Operators |
title_fullStr |
Weighted Norm Inequalities for Rough Singular Integral Operators |
title_full_unstemmed |
Weighted Norm Inequalities for Rough Singular Integral Operators |
title_sort |
Weighted Norm Inequalities for Rough Singular Integral Operators |
dc.creator.none.fl_str_mv |
Kangwei, Li Pérez, Carlos Rivera Ríos, Israel Pablo Roncal, Luz |
author |
Kangwei, Li |
author_facet |
Kangwei, Li Pérez, Carlos Rivera Ríos, Israel Pablo Roncal, Luz |
author_role |
author |
author2 |
Pérez, Carlos Rivera Ríos, Israel Pablo Roncal, Luz |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FEFFERMAN–STEIN INEQUALITIES ROUGH OPERATORS RUBIO DE FRANCIA ALGORITHM SPARSE OPERATORS WEIGHTS |
topic |
FEFFERMAN–STEIN INEQUALITIES ROUGH OPERATORS RUBIO DE FRANCIA ALGORITHM SPARSE OPERATORS WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals TΩ with Ω ∈ L∞(Sn-1) and the Bochner–Riesz multiplier at the critical index B(n-1)/2. More precisely, we prove qualitative and quantitative versions of Coifman–Fefferman type inequalities and their vector-valued extensions, weighted Ap- A∞ strong and weak type inequalities for 1 < p< ∞, and A1- A∞ type weak (1, 1) estimates. Moreover, Fefferman–Stein type inequalities are obtained, proving in this way a conjecture raised by the second-named author in the 1990s. As a corollary, we obtain the weighted A1- A∞ type estimates. Finally, we study rough homogenous singular integrals with a kernel involving a function Ω ∈ Lq(Sn-1) , 1 < q< ∞, and provide Fefferman–Stein inequalities too. The arguments used for our proofs combine several tools: a recent sparse domination result by Conde–Alonso et al. (Anal PDE 10(5):1255–1284, 2017), results by the first author (Collect Math 68:129–144, 2017), suitable adaptations of Rubio de Francia algorithm, the extrapolation theorems for A∞ weights (Cruz-Uribe et al. in J Funct Anal 213:412–439, 2004, Curbera et al. in Adv Math 203:256–318, 2006), and ideas contained in previous works by Seeger (J Am Math Soc 9:95–105 1996) and Fan and Sato (Tohoku Math J 53:265–284, 2001). Fil: Kangwei, Li. Basque Center for Applied Mathematics; España Fil: Pérez, Carlos. Universidad del País Vasco; España Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad del País Vasco; España Fil: Roncal, Luz. Basque Center for Applied Mathematics; España |
description |
In this paper we provide weighted estimates for rough operators, including rough homogeneous singular integrals TΩ with Ω ∈ L∞(Sn-1) and the Bochner–Riesz multiplier at the critical index B(n-1)/2. More precisely, we prove qualitative and quantitative versions of Coifman–Fefferman type inequalities and their vector-valued extensions, weighted Ap- A∞ strong and weak type inequalities for 1 < p< ∞, and A1- A∞ type weak (1, 1) estimates. Moreover, Fefferman–Stein type inequalities are obtained, proving in this way a conjecture raised by the second-named author in the 1990s. As a corollary, we obtain the weighted A1- A∞ type estimates. Finally, we study rough homogenous singular integrals with a kernel involving a function Ω ∈ Lq(Sn-1) , 1 < q< ∞, and provide Fefferman–Stein inequalities too. The arguments used for our proofs combine several tools: a recent sparse domination result by Conde–Alonso et al. (Anal PDE 10(5):1255–1284, 2017), results by the first author (Collect Math 68:129–144, 2017), suitable adaptations of Rubio de Francia algorithm, the extrapolation theorems for A∞ weights (Cruz-Uribe et al. in J Funct Anal 213:412–439, 2004, Curbera et al. in Adv Math 203:256–318, 2006), and ideas contained in previous works by Seeger (J Am Math Soc 9:95–105 1996) and Fan and Sato (Tohoku Math J 53:265–284, 2001). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85550 Kangwei, Li; Pérez, Carlos; Rivera Ríos, Israel Pablo; Roncal, Luz; Weighted Norm Inequalities for Rough Singular Integral Operators; Springer; The Journal Of Geometric Analysis; 29; 3; 7-2019; 2526-2564 1050-6926 1559-002X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85550 |
identifier_str_mv |
Kangwei, Li; Pérez, Carlos; Rivera Ríos, Israel Pablo; Roncal, Luz; Weighted Norm Inequalities for Rough Singular Integral Operators; Springer; The Journal Of Geometric Analysis; 29; 3; 7-2019; 2526-2564 1050-6926 1559-002X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-018-0085-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-018-0085-4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1701.05170 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269027421913088 |
score |
13.13397 |