Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility
- Autores
- Seguin Batadi, Eduardo Marcelo; Martinez, Maximiliano; Molina, Marcelo Gustavo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The risk of unintentional islanding creation in distributed energy systems poses a significant security concern since unintentional islanding formation could lead to a supply of energy outside of the optimal quality limits. This constitutes a risk for users, maintenance personnel, infrastructure, and devices. To mitigate this problem, anti-islanding protections are widely used to prevent the distributed generator from feeding a portion of the radial distribution grid when a protection device trips upstream. However, the effectiveness of these protections heavily relies on properly tuning protection setting thresholds (such as time delay and pickup). This work proposes a novel approach that utilizes entropy as a model and metric of the uncertainty associated with a particular protection setting. By minimizing entropy, the proposed method aims to improve stability and sensitivity, consequently improving the overall performance of anti-islanding protection. Simulation results demonstrate that the Bayesian entropy methodology (BEM) approach achieves enhanced stability in various scenarios, including frequency transients, and demonstrates a notable reduction in the size of the dataset and computational burden, ranging between 91% and 98%, when compared to related works, with an improvement of the uncertainty achieved. The findings of this study contribute to the development of more robust and reliable anti-islanding protections.
Fil: Seguin Batadi, Eduardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina - Materia
-
ANTI-ISLANDING
BAYESIAN ENTROPY METHODOLOGY
DERS
SHANNON’S ENTROPY
STABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231991
Ver los metadatos del registro completo
id |
CONICETDig_806cc0e51efe590d2ae05ae14f6f03bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231991 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and SensibilitySeguin Batadi, Eduardo MarceloMartinez, MaximilianoMolina, Marcelo GustavoANTI-ISLANDINGBAYESIAN ENTROPY METHODOLOGYDERSSHANNON’S ENTROPYSTABILITYhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The risk of unintentional islanding creation in distributed energy systems poses a significant security concern since unintentional islanding formation could lead to a supply of energy outside of the optimal quality limits. This constitutes a risk for users, maintenance personnel, infrastructure, and devices. To mitigate this problem, anti-islanding protections are widely used to prevent the distributed generator from feeding a portion of the radial distribution grid when a protection device trips upstream. However, the effectiveness of these protections heavily relies on properly tuning protection setting thresholds (such as time delay and pickup). This work proposes a novel approach that utilizes entropy as a model and metric of the uncertainty associated with a particular protection setting. By minimizing entropy, the proposed method aims to improve stability and sensitivity, consequently improving the overall performance of anti-islanding protection. Simulation results demonstrate that the Bayesian entropy methodology (BEM) approach achieves enhanced stability in various scenarios, including frequency transients, and demonstrates a notable reduction in the size of the dataset and computational burden, ranging between 91% and 98%, when compared to related works, with an improvement of the uncertainty achieved. The findings of this study contribute to the development of more robust and reliable anti-islanding protections.Fil: Seguin Batadi, Eduardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaMultidisciplinary Digital Publishing Institute2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231991Seguin Batadi, Eduardo Marcelo; Martinez, Maximiliano; Molina, Marcelo Gustavo; Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility; Multidisciplinary Digital Publishing Institute; Energies; 17; 3; 12-2023; 1-261996-1073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/17/3/693info:eu-repo/semantics/altIdentifier/doi/10.3390/en17030693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:28:06Zoai:ri.conicet.gov.ar:11336/231991instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:28:07.247CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
title |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
spellingShingle |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility Seguin Batadi, Eduardo Marcelo ANTI-ISLANDING BAYESIAN ENTROPY METHODOLOGY DERS SHANNON’S ENTROPY STABILITY |
title_short |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
title_full |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
title_fullStr |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
title_full_unstemmed |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
title_sort |
Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility |
dc.creator.none.fl_str_mv |
Seguin Batadi, Eduardo Marcelo Martinez, Maximiliano Molina, Marcelo Gustavo |
author |
Seguin Batadi, Eduardo Marcelo |
author_facet |
Seguin Batadi, Eduardo Marcelo Martinez, Maximiliano Molina, Marcelo Gustavo |
author_role |
author |
author2 |
Martinez, Maximiliano Molina, Marcelo Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANTI-ISLANDING BAYESIAN ENTROPY METHODOLOGY DERS SHANNON’S ENTROPY STABILITY |
topic |
ANTI-ISLANDING BAYESIAN ENTROPY METHODOLOGY DERS SHANNON’S ENTROPY STABILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The risk of unintentional islanding creation in distributed energy systems poses a significant security concern since unintentional islanding formation could lead to a supply of energy outside of the optimal quality limits. This constitutes a risk for users, maintenance personnel, infrastructure, and devices. To mitigate this problem, anti-islanding protections are widely used to prevent the distributed generator from feeding a portion of the radial distribution grid when a protection device trips upstream. However, the effectiveness of these protections heavily relies on properly tuning protection setting thresholds (such as time delay and pickup). This work proposes a novel approach that utilizes entropy as a model and metric of the uncertainty associated with a particular protection setting. By minimizing entropy, the proposed method aims to improve stability and sensitivity, consequently improving the overall performance of anti-islanding protection. Simulation results demonstrate that the Bayesian entropy methodology (BEM) approach achieves enhanced stability in various scenarios, including frequency transients, and demonstrates a notable reduction in the size of the dataset and computational burden, ranging between 91% and 98%, when compared to related works, with an improvement of the uncertainty achieved. The findings of this study contribute to the development of more robust and reliable anti-islanding protections. Fil: Seguin Batadi, Eduardo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina |
description |
The risk of unintentional islanding creation in distributed energy systems poses a significant security concern since unintentional islanding formation could lead to a supply of energy outside of the optimal quality limits. This constitutes a risk for users, maintenance personnel, infrastructure, and devices. To mitigate this problem, anti-islanding protections are widely used to prevent the distributed generator from feeding a portion of the radial distribution grid when a protection device trips upstream. However, the effectiveness of these protections heavily relies on properly tuning protection setting thresholds (such as time delay and pickup). This work proposes a novel approach that utilizes entropy as a model and metric of the uncertainty associated with a particular protection setting. By minimizing entropy, the proposed method aims to improve stability and sensitivity, consequently improving the overall performance of anti-islanding protection. Simulation results demonstrate that the Bayesian entropy methodology (BEM) approach achieves enhanced stability in various scenarios, including frequency transients, and demonstrates a notable reduction in the size of the dataset and computational burden, ranging between 91% and 98%, when compared to related works, with an improvement of the uncertainty achieved. The findings of this study contribute to the development of more robust and reliable anti-islanding protections. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231991 Seguin Batadi, Eduardo Marcelo; Martinez, Maximiliano; Molina, Marcelo Gustavo; Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility; Multidisciplinary Digital Publishing Institute; Energies; 17; 3; 12-2023; 1-26 1996-1073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231991 |
identifier_str_mv |
Seguin Batadi, Eduardo Marcelo; Martinez, Maximiliano; Molina, Marcelo Gustavo; Bayesian Entropy Methodology: A Novel Approach to Setting Anti-Islanding Protections with Enhanced Stability and Sensibility; Multidisciplinary Digital Publishing Institute; Energies; 17; 3; 12-2023; 1-26 1996-1073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/17/3/693 info:eu-repo/semantics/altIdentifier/doi/10.3390/en17030693 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082743045193728 |
score |
13.22299 |