Statistical properties of the entropy from ordinal patterns
- Autores
- Chagas, Eduarda; Frery, Alejandro César; Gambini, Juliana; Lucini, María Magdalena; Ramos, Heitor; Rey, Andrea Alejandra
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon's entropy for any model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem (assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon's entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results.
Fil: Chagas, Eduarda. Universidade Federal de Minas Gerais; Brasil
Fil: Frery, Alejandro César. Victoria University Of Wellington; Nueva Zelanda
Fil: Gambini, Juliana. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Ramos, Heitor. Universidade Federal de Minas Gerais; Brasil
Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ORDINAL PATTERNS
SHANNON ENTROPY
TIME SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217269
Ver los metadatos del registro completo
id |
CONICETDig_c9031ce2c3561d40fe4393b2e1f7de43 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217269 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Statistical properties of the entropy from ordinal patternsChagas, EduardaFrery, Alejandro CésarGambini, JulianaLucini, María MagdalenaRamos, HeitorRey, Andrea AlejandraORDINAL PATTERNSSHANNON ENTROPYTIME SERIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon's entropy for any model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem (assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon's entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results.Fil: Chagas, Eduarda. Universidade Federal de Minas Gerais; BrasilFil: Frery, Alejandro César. Victoria University Of Wellington; Nueva ZelandaFil: Gambini, Juliana. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Ramos, Heitor. Universidade Federal de Minas Gerais; BrasilFil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute of Physics2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217269Chagas, Eduarda; Frery, Alejandro César; Gambini, Juliana; Lucini, María Magdalena; Ramos, Heitor; et al.; Statistical properties of the entropy from ordinal patterns; American Institute of Physics; Chaos; 32; 11; 11-2022; 1-141054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0118706info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:12Zoai:ri.conicet.gov.ar:11336/217269instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:13.135CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Statistical properties of the entropy from ordinal patterns |
title |
Statistical properties of the entropy from ordinal patterns |
spellingShingle |
Statistical properties of the entropy from ordinal patterns Chagas, Eduarda ORDINAL PATTERNS SHANNON ENTROPY TIME SERIES |
title_short |
Statistical properties of the entropy from ordinal patterns |
title_full |
Statistical properties of the entropy from ordinal patterns |
title_fullStr |
Statistical properties of the entropy from ordinal patterns |
title_full_unstemmed |
Statistical properties of the entropy from ordinal patterns |
title_sort |
Statistical properties of the entropy from ordinal patterns |
dc.creator.none.fl_str_mv |
Chagas, Eduarda Frery, Alejandro César Gambini, Juliana Lucini, María Magdalena Ramos, Heitor Rey, Andrea Alejandra |
author |
Chagas, Eduarda |
author_facet |
Chagas, Eduarda Frery, Alejandro César Gambini, Juliana Lucini, María Magdalena Ramos, Heitor Rey, Andrea Alejandra |
author_role |
author |
author2 |
Frery, Alejandro César Gambini, Juliana Lucini, María Magdalena Ramos, Heitor Rey, Andrea Alejandra |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ORDINAL PATTERNS SHANNON ENTROPY TIME SERIES |
topic |
ORDINAL PATTERNS SHANNON ENTROPY TIME SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon's entropy for any model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem (assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon's entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results. Fil: Chagas, Eduarda. Universidade Federal de Minas Gerais; Brasil Fil: Frery, Alejandro César. Victoria University Of Wellington; Nueva Zelanda Fil: Gambini, Juliana. Instituto Tecnológico de Buenos Aires; Argentina Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Ramos, Heitor. Universidade Federal de Minas Gerais; Brasil Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon's entropy for any model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem (assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon's entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217269 Chagas, Eduarda; Frery, Alejandro César; Gambini, Juliana; Lucini, María Magdalena; Ramos, Heitor; et al.; Statistical properties of the entropy from ordinal patterns; American Institute of Physics; Chaos; 32; 11; 11-2022; 1-14 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217269 |
identifier_str_mv |
Chagas, Eduarda; Frery, Alejandro César; Gambini, Juliana; Lucini, María Magdalena; Ramos, Heitor; et al.; Statistical properties of the entropy from ordinal patterns; American Institute of Physics; Chaos; 32; 11; 11-2022; 1-14 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0118706 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613968345169920 |
score |
13.070432 |