Hyperbolic Diffusion Functionals on a Ring with Finite Velocity

Autores
Nizama Mendoza, Marco Alfredo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Materia
LATTICE
PERIODIC BOUNDARY CONDITIONS
FISHER’S INFORMATION
SHANNON’S ENTROPY
CRAMÉR–RAO BOUND
COMPLEXITY
POWER-LAW
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/272774

id CONICETDig_52de58ef0309c2046323625f2785862f
oai_identifier_str oai:ri.conicet.gov.ar:11336/272774
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hyperbolic Diffusion Functionals on a Ring with Finite VelocityNizama Mendoza, Marco AlfredoLATTICEPERIODIC BOUNDARY CONDITIONSFISHER’S INFORMATIONSHANNON’S ENTROPYCRAMÉR–RAO BOUNDCOMPLEXITYPOWER-LAWhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaMolecular Diversity Preservation International2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272774Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-131099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/2/105info:eu-repo/semantics/altIdentifier/doi/10.3390/e27020105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:07:53Zoai:ri.conicet.gov.ar:11336/272774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:07:53.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
title Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
spellingShingle Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
Nizama Mendoza, Marco Alfredo
LATTICE
PERIODIC BOUNDARY CONDITIONS
FISHER’S INFORMATION
SHANNON’S ENTROPY
CRAMÉR–RAO BOUND
COMPLEXITY
POWER-LAW
title_short Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
title_full Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
title_fullStr Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
title_full_unstemmed Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
title_sort Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
dc.creator.none.fl_str_mv Nizama Mendoza, Marco Alfredo
author Nizama Mendoza, Marco Alfredo
author_facet Nizama Mendoza, Marco Alfredo
author_role author
dc.subject.none.fl_str_mv LATTICE
PERIODIC BOUNDARY CONDITIONS
FISHER’S INFORMATION
SHANNON’S ENTROPY
CRAMÉR–RAO BOUND
COMPLEXITY
POWER-LAW
topic LATTICE
PERIODIC BOUNDARY CONDITIONS
FISHER’S INFORMATION
SHANNON’S ENTROPY
CRAMÉR–RAO BOUND
COMPLEXITY
POWER-LAW
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
description I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/272774
Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-13
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/272774
identifier_str_mv Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-13
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/2/105
info:eu-repo/semantics/altIdentifier/doi/10.3390/e27020105
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083224119279616
score 13.22299