Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
- Autores
- Nizama Mendoza, Marco Alfredo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina - Materia
-
LATTICE
PERIODIC BOUNDARY CONDITIONS
FISHER’S INFORMATION
SHANNON’S ENTROPY
CRAMÉR–RAO BOUND
COMPLEXITY
POWER-LAW - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272774
Ver los metadatos del registro completo
| id |
CONICETDig_52de58ef0309c2046323625f2785862f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272774 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Hyperbolic Diffusion Functionals on a Ring with Finite VelocityNizama Mendoza, Marco AlfredoLATTICEPERIODIC BOUNDARY CONDITIONSFISHER’S INFORMATIONSHANNON’S ENTROPYCRAMÉR–RAO BOUNDCOMPLEXITYPOWER-LAWhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaMolecular Diversity Preservation International2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272774Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-131099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/2/105info:eu-repo/semantics/altIdentifier/doi/10.3390/e27020105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:48:58Zoai:ri.conicet.gov.ar:11336/272774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:48:58.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| title |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| spellingShingle |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity Nizama Mendoza, Marco Alfredo LATTICE PERIODIC BOUNDARY CONDITIONS FISHER’S INFORMATION SHANNON’S ENTROPY CRAMÉR–RAO BOUND COMPLEXITY POWER-LAW |
| title_short |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| title_full |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| title_fullStr |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| title_full_unstemmed |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| title_sort |
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity |
| dc.creator.none.fl_str_mv |
Nizama Mendoza, Marco Alfredo |
| author |
Nizama Mendoza, Marco Alfredo |
| author_facet |
Nizama Mendoza, Marco Alfredo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
LATTICE PERIODIC BOUNDARY CONDITIONS FISHER’S INFORMATION SHANNON’S ENTROPY CRAMÉR–RAO BOUND COMPLEXITY POWER-LAW |
| topic |
LATTICE PERIODIC BOUNDARY CONDITIONS FISHER’S INFORMATION SHANNON’S ENTROPY CRAMÉR–RAO BOUND COMPLEXITY POWER-LAW |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times. Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina |
| description |
I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272774 Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-13 1099-4300 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/272774 |
| identifier_str_mv |
Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-13 1099-4300 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/2/105 info:eu-repo/semantics/altIdentifier/doi/10.3390/e27020105 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598042754678784 |
| score |
12.976206 |