A Shannon-Tsallis transformation

Autores
Rufeil Fiori, Elena; Plastino, Ángel Luis
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.
Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España
Materia
Shannon entropy
Tsallis entropy
MaxEnt
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23396

id CONICETDig_478578e380321da6ba6f924c28deb63a
oai_identifier_str oai:ri.conicet.gov.ar:11336/23396
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Shannon-Tsallis transformationRufeil Fiori, ElenaPlastino, Ángel LuisShannon entropyTsallis entropyMaxEnthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; EspañaElsevier2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23396Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-17490378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113000162info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.037info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1201.4507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:32Zoai:ri.conicet.gov.ar:11336/23396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:33.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Shannon-Tsallis transformation
title A Shannon-Tsallis transformation
spellingShingle A Shannon-Tsallis transformation
Rufeil Fiori, Elena
Shannon entropy
Tsallis entropy
MaxEnt
title_short A Shannon-Tsallis transformation
title_full A Shannon-Tsallis transformation
title_fullStr A Shannon-Tsallis transformation
title_full_unstemmed A Shannon-Tsallis transformation
title_sort A Shannon-Tsallis transformation
dc.creator.none.fl_str_mv Rufeil Fiori, Elena
Plastino, Ángel Luis
author Rufeil Fiori, Elena
author_facet Rufeil Fiori, Elena
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Shannon entropy
Tsallis entropy
MaxEnt
topic Shannon entropy
Tsallis entropy
MaxEnt
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.
Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España
description Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23396
Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-1749
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23396
identifier_str_mv Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-1749
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113000162
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.037
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1201.4507
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268673879834624
score 13.13397