A Shannon-Tsallis transformation
- Autores
- Rufeil Fiori, Elena; Plastino, Ángel Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.
Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España - Materia
-
Shannon entropy
Tsallis entropy
MaxEnt - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23396
Ver los metadatos del registro completo
id |
CONICETDig_478578e380321da6ba6f924c28deb63a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23396 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Shannon-Tsallis transformationRufeil Fiori, ElenaPlastino, Ángel LuisShannon entropyTsallis entropyMaxEnthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart.Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; EspañaElsevier2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23396Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-17490378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113000162info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.037info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1201.4507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:32Zoai:ri.conicet.gov.ar:11336/23396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:33.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Shannon-Tsallis transformation |
title |
A Shannon-Tsallis transformation |
spellingShingle |
A Shannon-Tsallis transformation Rufeil Fiori, Elena Shannon entropy Tsallis entropy MaxEnt |
title_short |
A Shannon-Tsallis transformation |
title_full |
A Shannon-Tsallis transformation |
title_fullStr |
A Shannon-Tsallis transformation |
title_full_unstemmed |
A Shannon-Tsallis transformation |
title_sort |
A Shannon-Tsallis transformation |
dc.creator.none.fl_str_mv |
Rufeil Fiori, Elena Plastino, Ángel Luis |
author |
Rufeil Fiori, Elena |
author_facet |
Rufeil Fiori, Elena Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Shannon entropy Tsallis entropy MaxEnt |
topic |
Shannon entropy Tsallis entropy MaxEnt |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart. Fil: Rufeil Fiori, Elena. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad de las Islas Baleares; España |
description |
Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23396 Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-1749 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23396 |
identifier_str_mv |
Rufeil Fiori, Elena; Plastino, Ángel Luis; A Shannon-Tsallis transformation; Elsevier; Physica A: Statistical Mechanics and its Applications; 392; 8; 1-2013; 1742-1749 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113000162 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2012.12.037 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1201.4507 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268673879834624 |
score |
13.13397 |