Gravitational wave surrogates through automated machine learning

Autores
Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
MACHINE LEARNING
REDUCED ORDER MODELING
WAVEFORM SURROGATES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/201568

id CONICETDig_7f47722f3aaa5e37846f87d423ac34d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/201568
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gravitational wave surrogates through automated machine learningBarsotti, DamiánCerino, FrancoTiglio, ManuelVillanueva, Uziel AarónMACHINE LEARNINGREDUCED ORDER MODELINGWAVEFORM SURROGATEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaIOP Publishing2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201568Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-160264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac5ba1info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac5ba1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:15Zoai:ri.conicet.gov.ar:11336/201568instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:15.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gravitational wave surrogates through automated machine learning
title Gravitational wave surrogates through automated machine learning
spellingShingle Gravitational wave surrogates through automated machine learning
Barsotti, Damián
MACHINE LEARNING
REDUCED ORDER MODELING
WAVEFORM SURROGATES
title_short Gravitational wave surrogates through automated machine learning
title_full Gravitational wave surrogates through automated machine learning
title_fullStr Gravitational wave surrogates through automated machine learning
title_full_unstemmed Gravitational wave surrogates through automated machine learning
title_sort Gravitational wave surrogates through automated machine learning
dc.creator.none.fl_str_mv Barsotti, Damián
Cerino, Franco
Tiglio, Manuel
Villanueva, Uziel Aarón
author Barsotti, Damián
author_facet Barsotti, Damián
Cerino, Franco
Tiglio, Manuel
Villanueva, Uziel Aarón
author_role author
author2 Cerino, Franco
Tiglio, Manuel
Villanueva, Uziel Aarón
author2_role author
author
author
dc.subject.none.fl_str_mv MACHINE LEARNING
REDUCED ORDER MODELING
WAVEFORM SURROGATES
topic MACHINE LEARNING
REDUCED ORDER MODELING
WAVEFORM SURROGATES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/201568
Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-16
0264-9381
CONICET Digital
CONICET
url http://hdl.handle.net/11336/201568
identifier_str_mv Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-16
0264-9381
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac5ba1
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac5ba1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269746603491328
score 13.13397