Gravitational wave surrogates through automated machine learning
- Autores
- Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
MACHINE LEARNING
REDUCED ORDER MODELING
WAVEFORM SURROGATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/201568
Ver los metadatos del registro completo
id |
CONICETDig_7f47722f3aaa5e37846f87d423ac34d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/201568 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gravitational wave surrogates through automated machine learningBarsotti, DamiánCerino, FrancoTiglio, ManuelVillanueva, Uziel AarónMACHINE LEARNINGREDUCED ORDER MODELINGWAVEFORM SURROGATEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaIOP Publishing2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201568Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-160264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac5ba1info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac5ba1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:15Zoai:ri.conicet.gov.ar:11336/201568instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:15.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gravitational wave surrogates through automated machine learning |
title |
Gravitational wave surrogates through automated machine learning |
spellingShingle |
Gravitational wave surrogates through automated machine learning Barsotti, Damián MACHINE LEARNING REDUCED ORDER MODELING WAVEFORM SURROGATES |
title_short |
Gravitational wave surrogates through automated machine learning |
title_full |
Gravitational wave surrogates through automated machine learning |
title_fullStr |
Gravitational wave surrogates through automated machine learning |
title_full_unstemmed |
Gravitational wave surrogates through automated machine learning |
title_sort |
Gravitational wave surrogates through automated machine learning |
dc.creator.none.fl_str_mv |
Barsotti, Damián Cerino, Franco Tiglio, Manuel Villanueva, Uziel Aarón |
author |
Barsotti, Damián |
author_facet |
Barsotti, Damián Cerino, Franco Tiglio, Manuel Villanueva, Uziel Aarón |
author_role |
author |
author2 |
Cerino, Franco Tiglio, Manuel Villanueva, Uziel Aarón |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING REDUCED ORDER MODELING WAVEFORM SURROGATES |
topic |
MACHINE LEARNING REDUCED ORDER MODELING WAVEFORM SURROGATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves. Fil: Barsotti, Damián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Cerino, Franco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Villanueva, Uziel Aarón. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/201568 Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-16 0264-9381 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/201568 |
identifier_str_mv |
Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-16 0264-9381 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac5ba1 info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac5ba1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269746603491328 |
score |
13.13397 |