An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
- Autores
- Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.
Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
GRAVITATIONAL WAVES
MACHINE LEARNING
REDUCED BASIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231594
Ver los metadatos del registro completo
id |
CONICETDig_b654a51d132e6606327af133249b37e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231594 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinementCerino, FrancoTiglio, ManuelDiaz Pace, Jorge AndresGRAVITATIONAL WAVESMACHINE LEARNINGREDUCED BASIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaIOP Publishing2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231594Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-160264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/acf4e7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:53Zoai:ri.conicet.gov.ar:11336/231594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:53.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
title |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
spellingShingle |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement Cerino, Franco GRAVITATIONAL WAVES MACHINE LEARNING REDUCED BASIS |
title_short |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
title_full |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
title_fullStr |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
title_full_unstemmed |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
title_sort |
An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement |
dc.creator.none.fl_str_mv |
Cerino, Franco Tiglio, Manuel Diaz Pace, Jorge Andres |
author |
Cerino, Franco |
author_facet |
Cerino, Franco Tiglio, Manuel Diaz Pace, Jorge Andres |
author_role |
author |
author2 |
Tiglio, Manuel Diaz Pace, Jorge Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GRAVITATIONAL WAVES MACHINE LEARNING REDUCED BASIS |
topic |
GRAVITATIONAL WAVES MACHINE LEARNING REDUCED BASIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors. Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231594 Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-16 0264-9381 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231594 |
identifier_str_mv |
Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-16 0264-9381 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/acf4e7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613900649103360 |
score |
13.070432 |