An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement

Autores
Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.
Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
GRAVITATIONAL WAVES
MACHINE LEARNING
REDUCED BASIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231594

id CONICETDig_b654a51d132e6606327af133249b37e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/231594
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinementCerino, FrancoTiglio, ManuelDiaz Pace, Jorge AndresGRAVITATIONAL WAVESMACHINE LEARNINGREDUCED BASIShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaIOP Publishing2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231594Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-160264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/acf4e7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:53Zoai:ri.conicet.gov.ar:11336/231594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:53.698CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
title An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
spellingShingle An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
Cerino, Franco
GRAVITATIONAL WAVES
MACHINE LEARNING
REDUCED BASIS
title_short An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
title_full An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
title_fullStr An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
title_full_unstemmed An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
title_sort An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement
dc.creator.none.fl_str_mv Cerino, Franco
Tiglio, Manuel
Diaz Pace, Jorge Andres
author Cerino, Franco
author_facet Cerino, Franco
Tiglio, Manuel
Diaz Pace, Jorge Andres
author_role author
author2 Tiglio, Manuel
Diaz Pace, Jorge Andres
author2_role author
author
dc.subject.none.fl_str_mv GRAVITATIONAL WAVES
MACHINE LEARNING
REDUCED BASIS
topic GRAVITATIONAL WAVES
MACHINE LEARNING
REDUCED BASIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.
Fil: Cerino, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Tiglio, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description We introduce hp-greedy, a refinement approach for building gravitational wave (GW) surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: (i) representations of lower dimension with no loss of accuracy, (ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and (iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of GWs emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: (i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and (ii) the search of GWs through clustering and nearest neighbors.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231594
Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-16
0264-9381
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231594
identifier_str_mv Cerino, Franco; Tiglio, Manuel; Diaz Pace, Jorge Andres; An automated parameter domain decomposition approach for gravitational wave surrogates using hp-greedy refinement; IOP Publishing; Classical and Quantum Gravity; 40; 20; 10-2023; 1-16
0264-9381
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/acf4e7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613900649103360
score 13.070432