Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate

Autores
Alviso, Dario; Duarte, Shirley; Alvarenga, Nelson; Rolón, Juan Carlos; Darabiha, Nasser
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Bio-oil is a complex real fuel, considered as a carbon-neutral alternative to hydrocarbons in the transport sector, which is composed of hundreds of compounds, mostly oxygenated. Pyrolysis oil has high acidity, low thermal stability, low calorific value, high water content, high viscosity, and poor lubrication characteristics. Therefore, its use in transportation is limited. These characteristics make it totally different from petroleum fuels affecting the combustion process. Blends of bio-oil/diesel/alcohols are viable short-term alternatives to utilize an important fraction of these oils. In the present work, pyrolysis was performed on torrefied coconut endocarp and the collected bio-oil was analyzed using gas chromatography/mass spectrometry (GC/MS). Based on the GC/MS analysis, three different blends of toluene, ethanol, and acetic acid representative of the real fuel chemistry were proposed as the surrogates to carry out combustion studies. The objective of this paper is to develop a chemical kinetics mechanism for toluene/ethanol/acetic acid blend oxidation. This will be done by combining the chemical model of Huang et al. [Energy Convers. Manage. 2017, 149, 553] for toluene and that of Christensen and Konnov [Combust. Flame 2016, 170, 12] for ethanol/acetic acid reactions. The resulting chemical model consisting of 180 species and 1495 reactions will be validated by performing combustion zero- and one-dimensional simulations for toluene/ethanol/acetic acid blends by studying constant-volume autoignition and laminar flame speed. Then, as Huang et al.'s original model was developed and validated for diesel/n-butanol blends, autoignition delays and laminar flame speed simulations of bio-oil/diesel/n-butanol are presented.
Fil: Alviso, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Paris-Saclay; Francia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de Asunción; Paraguay
Fil: Duarte, Shirley. Universidad Nacional de Asunción; Paraguay. Université Paris-Saclay; Francia
Fil: Alvarenga, Nelson. Universidad Nacional de Asunción; Paraguay
Fil: Rolón, Juan Carlos. Universidad Nacional de Asunción; Paraguay
Fil: Darabiha, Nasser. Université Paris-Saclay; Francia
Materia
Bio-oil
Kinetic
Pyrolisis
Surrogate
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98241

id CONICETDig_195db3d4e6e2882cb8371e025e7f0a73
oai_identifier_str oai:ri.conicet.gov.ar:11336/98241
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chemical Kinetic Mechanism for Pyrolysis Bio-oil SurrogateAlviso, DarioDuarte, ShirleyAlvarenga, NelsonRolón, Juan CarlosDarabiha, NasserBio-oilKineticPyrolisisSurrogatehttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Bio-oil is a complex real fuel, considered as a carbon-neutral alternative to hydrocarbons in the transport sector, which is composed of hundreds of compounds, mostly oxygenated. Pyrolysis oil has high acidity, low thermal stability, low calorific value, high water content, high viscosity, and poor lubrication characteristics. Therefore, its use in transportation is limited. These characteristics make it totally different from petroleum fuels affecting the combustion process. Blends of bio-oil/diesel/alcohols are viable short-term alternatives to utilize an important fraction of these oils. In the present work, pyrolysis was performed on torrefied coconut endocarp and the collected bio-oil was analyzed using gas chromatography/mass spectrometry (GC/MS). Based on the GC/MS analysis, three different blends of toluene, ethanol, and acetic acid representative of the real fuel chemistry were proposed as the surrogates to carry out combustion studies. The objective of this paper is to develop a chemical kinetics mechanism for toluene/ethanol/acetic acid blend oxidation. This will be done by combining the chemical model of Huang et al. [Energy Convers. Manage. 2017, 149, 553] for toluene and that of Christensen and Konnov [Combust. Flame 2016, 170, 12] for ethanol/acetic acid reactions. The resulting chemical model consisting of 180 species and 1495 reactions will be validated by performing combustion zero- and one-dimensional simulations for toluene/ethanol/acetic acid blends by studying constant-volume autoignition and laminar flame speed. Then, as Huang et al.'s original model was developed and validated for diesel/n-butanol blends, autoignition delays and laminar flame speed simulations of bio-oil/diesel/n-butanol are presented.Fil: Alviso, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Paris-Saclay; Francia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de Asunción; ParaguayFil: Duarte, Shirley. Universidad Nacional de Asunción; Paraguay. Université Paris-Saclay; FranciaFil: Alvarenga, Nelson. Universidad Nacional de Asunción; ParaguayFil: Rolón, Juan Carlos. Universidad Nacional de Asunción; ParaguayFil: Darabiha, Nasser. Université Paris-Saclay; FranciaAmerican Chemical Society2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98241Alviso, Dario; Duarte, Shirley; Alvarenga, Nelson; Rolón, Juan Carlos; Darabiha, Nasser; Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate; American Chemical Society; Energy & Fuels (print); 32; 10; 10-2018; 10984-109980887-0624CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.energyfuels.8b02219info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.energyfuels.8b02219info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:45Zoai:ri.conicet.gov.ar:11336/98241instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:45.916CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
title Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
spellingShingle Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
Alviso, Dario
Bio-oil
Kinetic
Pyrolisis
Surrogate
title_short Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
title_full Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
title_fullStr Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
title_full_unstemmed Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
title_sort Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate
dc.creator.none.fl_str_mv Alviso, Dario
Duarte, Shirley
Alvarenga, Nelson
Rolón, Juan Carlos
Darabiha, Nasser
author Alviso, Dario
author_facet Alviso, Dario
Duarte, Shirley
Alvarenga, Nelson
Rolón, Juan Carlos
Darabiha, Nasser
author_role author
author2 Duarte, Shirley
Alvarenga, Nelson
Rolón, Juan Carlos
Darabiha, Nasser
author2_role author
author
author
author
dc.subject.none.fl_str_mv Bio-oil
Kinetic
Pyrolisis
Surrogate
topic Bio-oil
Kinetic
Pyrolisis
Surrogate
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Bio-oil is a complex real fuel, considered as a carbon-neutral alternative to hydrocarbons in the transport sector, which is composed of hundreds of compounds, mostly oxygenated. Pyrolysis oil has high acidity, low thermal stability, low calorific value, high water content, high viscosity, and poor lubrication characteristics. Therefore, its use in transportation is limited. These characteristics make it totally different from petroleum fuels affecting the combustion process. Blends of bio-oil/diesel/alcohols are viable short-term alternatives to utilize an important fraction of these oils. In the present work, pyrolysis was performed on torrefied coconut endocarp and the collected bio-oil was analyzed using gas chromatography/mass spectrometry (GC/MS). Based on the GC/MS analysis, three different blends of toluene, ethanol, and acetic acid representative of the real fuel chemistry were proposed as the surrogates to carry out combustion studies. The objective of this paper is to develop a chemical kinetics mechanism for toluene/ethanol/acetic acid blend oxidation. This will be done by combining the chemical model of Huang et al. [Energy Convers. Manage. 2017, 149, 553] for toluene and that of Christensen and Konnov [Combust. Flame 2016, 170, 12] for ethanol/acetic acid reactions. The resulting chemical model consisting of 180 species and 1495 reactions will be validated by performing combustion zero- and one-dimensional simulations for toluene/ethanol/acetic acid blends by studying constant-volume autoignition and laminar flame speed. Then, as Huang et al.'s original model was developed and validated for diesel/n-butanol blends, autoignition delays and laminar flame speed simulations of bio-oil/diesel/n-butanol are presented.
Fil: Alviso, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Paris-Saclay; Francia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de Asunción; Paraguay
Fil: Duarte, Shirley. Universidad Nacional de Asunción; Paraguay. Université Paris-Saclay; Francia
Fil: Alvarenga, Nelson. Universidad Nacional de Asunción; Paraguay
Fil: Rolón, Juan Carlos. Universidad Nacional de Asunción; Paraguay
Fil: Darabiha, Nasser. Université Paris-Saclay; Francia
description Bio-oil is a complex real fuel, considered as a carbon-neutral alternative to hydrocarbons in the transport sector, which is composed of hundreds of compounds, mostly oxygenated. Pyrolysis oil has high acidity, low thermal stability, low calorific value, high water content, high viscosity, and poor lubrication characteristics. Therefore, its use in transportation is limited. These characteristics make it totally different from petroleum fuels affecting the combustion process. Blends of bio-oil/diesel/alcohols are viable short-term alternatives to utilize an important fraction of these oils. In the present work, pyrolysis was performed on torrefied coconut endocarp and the collected bio-oil was analyzed using gas chromatography/mass spectrometry (GC/MS). Based on the GC/MS analysis, three different blends of toluene, ethanol, and acetic acid representative of the real fuel chemistry were proposed as the surrogates to carry out combustion studies. The objective of this paper is to develop a chemical kinetics mechanism for toluene/ethanol/acetic acid blend oxidation. This will be done by combining the chemical model of Huang et al. [Energy Convers. Manage. 2017, 149, 553] for toluene and that of Christensen and Konnov [Combust. Flame 2016, 170, 12] for ethanol/acetic acid reactions. The resulting chemical model consisting of 180 species and 1495 reactions will be validated by performing combustion zero- and one-dimensional simulations for toluene/ethanol/acetic acid blends by studying constant-volume autoignition and laminar flame speed. Then, as Huang et al.'s original model was developed and validated for diesel/n-butanol blends, autoignition delays and laminar flame speed simulations of bio-oil/diesel/n-butanol are presented.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98241
Alviso, Dario; Duarte, Shirley; Alvarenga, Nelson; Rolón, Juan Carlos; Darabiha, Nasser; Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate; American Chemical Society; Energy & Fuels (print); 32; 10; 10-2018; 10984-10998
0887-0624
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98241
identifier_str_mv Alviso, Dario; Duarte, Shirley; Alvarenga, Nelson; Rolón, Juan Carlos; Darabiha, Nasser; Chemical Kinetic Mechanism for Pyrolysis Bio-oil Surrogate; American Chemical Society; Energy & Fuels (print); 32; 10; 10-2018; 10984-10998
0887-0624
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.energyfuels.8b02219
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.energyfuels.8b02219
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268751721922560
score 13.13397