Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights
- Autores
- Ipar, Eugenia; Cymberknop, Leandro Javier; Armentano, Ricardo Luis
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With aging being a major non-reversible risk factor for cardiovascular disease, the concept of Vascular Age (VA) emerges as a promising alternate measure to assess an individual’s cardiovascular risk and overall health. This study investigated the use of frequency features and Supervised Learning (SL) models for estimating a VA Age-Group (VAAG), as a surrogate of Chronological Age (CHA). Frequency features offer an accessible alternative to temporal and amplitude features, reducing reliance on high sampling frequencies and complex algorithms. Simulated subjects from One-dimensional models were employed to train SL algorithms, complemented with healthy in vivo subjects. Validation with real-world subject data was emphasized to ensure model applicability, using well-known risk factors as a form of cardiovascular health analysis and verification. Random Forest (RF) proved to be the best-performing model, achieving an accuracy/AUC score of 66.5%/0.59 for the in vivo test dataset, and 97.5%/0.99 for the in silico one. This research contributed to preventive medicine strategies, supporting early detection and personalized risk assessment for improved cardiovascular health outcomes across diverse populations.
Fil: Ipar, Eugenia. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cymberknop, Leandro Javier. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; Argentina
Fil: Armentano, Ricardo Luis. Universidad de la República; Uruguay - Materia
-
vascular age
machine learning
arterial pressure waveform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242851
Ver los metadatos del registro completo
id |
CONICETDig_ff441a8774af2c2601886d84b6c528d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242851 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor InsightsIpar, EugeniaCymberknop, Leandro JavierArmentano, Ricardo Luisvascular agemachine learningarterial pressure waveformhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1With aging being a major non-reversible risk factor for cardiovascular disease, the concept of Vascular Age (VA) emerges as a promising alternate measure to assess an individual’s cardiovascular risk and overall health. This study investigated the use of frequency features and Supervised Learning (SL) models for estimating a VA Age-Group (VAAG), as a surrogate of Chronological Age (CHA). Frequency features offer an accessible alternative to temporal and amplitude features, reducing reliance on high sampling frequencies and complex algorithms. Simulated subjects from One-dimensional models were employed to train SL algorithms, complemented with healthy in vivo subjects. Validation with real-world subject data was emphasized to ensure model applicability, using well-known risk factors as a form of cardiovascular health analysis and verification. Random Forest (RF) proved to be the best-performing model, achieving an accuracy/AUC score of 66.5%/0.59 for the in vivo test dataset, and 97.5%/0.99 for the in silico one. This research contributed to preventive medicine strategies, supporting early detection and personalized risk assessment for improved cardiovascular health outcomes across diverse populations.Fil: Ipar, Eugenia. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cymberknop, Leandro Javier. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; ArgentinaFil: Armentano, Ricardo Luis. Universidad de la República; UruguayMDPI2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242851Ipar, Eugenia; Cymberknop, Leandro Javier; Armentano, Ricardo Luis; Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights; MDPI; Applied Sciences; 13; 19; 9-2023; 1-222076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/13/19/10585info:eu-repo/semantics/altIdentifier/doi/10.3390/app131910585info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:29Zoai:ri.conicet.gov.ar:11336/242851instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:29.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
title |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
spellingShingle |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights Ipar, Eugenia vascular age machine learning arterial pressure waveform |
title_short |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
title_full |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
title_fullStr |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
title_full_unstemmed |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
title_sort |
Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights |
dc.creator.none.fl_str_mv |
Ipar, Eugenia Cymberknop, Leandro Javier Armentano, Ricardo Luis |
author |
Ipar, Eugenia |
author_facet |
Ipar, Eugenia Cymberknop, Leandro Javier Armentano, Ricardo Luis |
author_role |
author |
author2 |
Cymberknop, Leandro Javier Armentano, Ricardo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
vascular age machine learning arterial pressure waveform |
topic |
vascular age machine learning arterial pressure waveform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With aging being a major non-reversible risk factor for cardiovascular disease, the concept of Vascular Age (VA) emerges as a promising alternate measure to assess an individual’s cardiovascular risk and overall health. This study investigated the use of frequency features and Supervised Learning (SL) models for estimating a VA Age-Group (VAAG), as a surrogate of Chronological Age (CHA). Frequency features offer an accessible alternative to temporal and amplitude features, reducing reliance on high sampling frequencies and complex algorithms. Simulated subjects from One-dimensional models were employed to train SL algorithms, complemented with healthy in vivo subjects. Validation with real-world subject data was emphasized to ensure model applicability, using well-known risk factors as a form of cardiovascular health analysis and verification. Random Forest (RF) proved to be the best-performing model, achieving an accuracy/AUC score of 66.5%/0.59 for the in vivo test dataset, and 97.5%/0.99 for the in silico one. This research contributed to preventive medicine strategies, supporting early detection and personalized risk assessment for improved cardiovascular health outcomes across diverse populations. Fil: Ipar, Eugenia. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cymberknop, Leandro Javier. Universidad Tecnologica Nacional. Facultad Regional Buenos Aires. Grupo de Investigacion y Desarrollo En Bioingenieria.; Argentina Fil: Armentano, Ricardo Luis. Universidad de la República; Uruguay |
description |
With aging being a major non-reversible risk factor for cardiovascular disease, the concept of Vascular Age (VA) emerges as a promising alternate measure to assess an individual’s cardiovascular risk and overall health. This study investigated the use of frequency features and Supervised Learning (SL) models for estimating a VA Age-Group (VAAG), as a surrogate of Chronological Age (CHA). Frequency features offer an accessible alternative to temporal and amplitude features, reducing reliance on high sampling frequencies and complex algorithms. Simulated subjects from One-dimensional models were employed to train SL algorithms, complemented with healthy in vivo subjects. Validation with real-world subject data was emphasized to ensure model applicability, using well-known risk factors as a form of cardiovascular health analysis and verification. Random Forest (RF) proved to be the best-performing model, achieving an accuracy/AUC score of 66.5%/0.59 for the in vivo test dataset, and 97.5%/0.99 for the in silico one. This research contributed to preventive medicine strategies, supporting early detection and personalized risk assessment for improved cardiovascular health outcomes across diverse populations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242851 Ipar, Eugenia; Cymberknop, Leandro Javier; Armentano, Ricardo Luis; Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights; MDPI; Applied Sciences; 13; 19; 9-2023; 1-22 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242851 |
identifier_str_mv |
Ipar, Eugenia; Cymberknop, Leandro Javier; Armentano, Ricardo Luis; Exploring Arterial Wave Frequency Features for Vascular Age Assessment through Supervised Learning with Risk Factor Insights; MDPI; Applied Sciences; 13; 19; 9-2023; 1-22 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/13/19/10585 info:eu-repo/semantics/altIdentifier/doi/10.3390/app131910585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269912729387008 |
score |
13.13397 |