Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates
- Autores
- Cerino, Franco; Diaz Pace, Jorge Andres; Tassone, Emmanuel Agustin; Tiglio, Manuel; Villegas, Atuel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a previous work, we introduced, in the context of gravitational wave science, an initial study on an automated domain-decomposition approach for a reduced basis through hp-greedy refinement. The approach constructs local reduced bases of lower dimensionality than global ones, with the same or higher accuracy. These “light” local bases should imply both faster evaluations when predicting new waveforms and faster data analysis, particularly faster statistical inference (the forward and inverse problems, respectively). In this approach, however, we have previously found important dependence on several hyperparameters, which do not appear in a global reduced basis. This naturally leads to the problem of hyperparameter optimization (HPO), which is the subject of this paper. Here, we compare the efficiency of the Bayesian approach against grid and random searches, which are two order of magnitude slower. Then, we tackle the problem of HPO through Bayesian optimization.We find that, for the cases studied here of gravitational waves from the collision of two spinning but non-precessing black holes, for the same accuracy, local hp-greedy reduced bases with HPO have a lower dimensionality of up to 4×, depending on the desired accuracy. This factor should directly translate into a parameter estimation speedup in the context of reduced order quadratures, for instance. Such acceleration might help in the near real-time requirements for electromagnetic counterparts of gravitational waves from compact binary coalescences. The code developed for this project is available open source from public repositories.
Fil: Cerino, Franco. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Tassone, Emmanuel Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Tiglio, Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Villegas, Atuel. Universidad Nacional de Tucumán; Argentina - Materia
-
GRAVITATIONAL WAVE SURROGATES
MACHINE LEARNING
REDUCED BASIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260856
Ver los metadatos del registro completo
id |
CONICETDig_52d64b62d620375e3b9374c641f8ee58 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260856 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave SurrogatesCerino, FrancoDiaz Pace, Jorge AndresTassone, Emmanuel AgustinTiglio, ManuelVillegas, AtuelGRAVITATIONAL WAVE SURROGATESMACHINE LEARNINGREDUCED BASIShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In a previous work, we introduced, in the context of gravitational wave science, an initial study on an automated domain-decomposition approach for a reduced basis through hp-greedy refinement. The approach constructs local reduced bases of lower dimensionality than global ones, with the same or higher accuracy. These “light” local bases should imply both faster evaluations when predicting new waveforms and faster data analysis, particularly faster statistical inference (the forward and inverse problems, respectively). In this approach, however, we have previously found important dependence on several hyperparameters, which do not appear in a global reduced basis. This naturally leads to the problem of hyperparameter optimization (HPO), which is the subject of this paper. Here, we compare the efficiency of the Bayesian approach against grid and random searches, which are two order of magnitude slower. Then, we tackle the problem of HPO through Bayesian optimization.We find that, for the cases studied here of gravitational waves from the collision of two spinning but non-precessing black holes, for the same accuracy, local hp-greedy reduced bases with HPO have a lower dimensionality of up to 4×, depending on the desired accuracy. This factor should directly translate into a parameter estimation speedup in the context of reduced order quadratures, for instance. Such acceleration might help in the near real-time requirements for electromagnetic counterparts of gravitational waves from compact binary coalescences. The code developed for this project is available open source from public repositories.Fil: Cerino, Franco. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Tassone, Emmanuel Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Tiglio, Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Villegas, Atuel. Universidad Nacional de Tucumán; ArgentinaMDPI2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260856Cerino, Franco; Diaz Pace, Jorge Andres; Tassone, Emmanuel Agustin; Tiglio, Manuel; Villegas, Atuel; Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates; MDPI; Universe; 10; 1; 1-2024; 1-142218-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2218-1997/10/1/6info:eu-repo/semantics/altIdentifier/doi/10.3390/universe10010006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:10:56Zoai:ri.conicet.gov.ar:11336/260856instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:10:56.37CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
title |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
spellingShingle |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates Cerino, Franco GRAVITATIONAL WAVE SURROGATES MACHINE LEARNING REDUCED BASIS |
title_short |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
title_full |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
title_fullStr |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
title_full_unstemmed |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
title_sort |
Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates |
dc.creator.none.fl_str_mv |
Cerino, Franco Diaz Pace, Jorge Andres Tassone, Emmanuel Agustin Tiglio, Manuel Villegas, Atuel |
author |
Cerino, Franco |
author_facet |
Cerino, Franco Diaz Pace, Jorge Andres Tassone, Emmanuel Agustin Tiglio, Manuel Villegas, Atuel |
author_role |
author |
author2 |
Diaz Pace, Jorge Andres Tassone, Emmanuel Agustin Tiglio, Manuel Villegas, Atuel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
GRAVITATIONAL WAVE SURROGATES MACHINE LEARNING REDUCED BASIS |
topic |
GRAVITATIONAL WAVE SURROGATES MACHINE LEARNING REDUCED BASIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a previous work, we introduced, in the context of gravitational wave science, an initial study on an automated domain-decomposition approach for a reduced basis through hp-greedy refinement. The approach constructs local reduced bases of lower dimensionality than global ones, with the same or higher accuracy. These “light” local bases should imply both faster evaluations when predicting new waveforms and faster data analysis, particularly faster statistical inference (the forward and inverse problems, respectively). In this approach, however, we have previously found important dependence on several hyperparameters, which do not appear in a global reduced basis. This naturally leads to the problem of hyperparameter optimization (HPO), which is the subject of this paper. Here, we compare the efficiency of the Bayesian approach against grid and random searches, which are two order of magnitude slower. Then, we tackle the problem of HPO through Bayesian optimization.We find that, for the cases studied here of gravitational waves from the collision of two spinning but non-precessing black holes, for the same accuracy, local hp-greedy reduced bases with HPO have a lower dimensionality of up to 4×, depending on the desired accuracy. This factor should directly translate into a parameter estimation speedup in the context of reduced order quadratures, for instance. Such acceleration might help in the near real-time requirements for electromagnetic counterparts of gravitational waves from compact binary coalescences. The code developed for this project is available open source from public repositories. Fil: Cerino, Franco. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Tassone, Emmanuel Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Tiglio, Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Villegas, Atuel. Universidad Nacional de Tucumán; Argentina |
description |
In a previous work, we introduced, in the context of gravitational wave science, an initial study on an automated domain-decomposition approach for a reduced basis through hp-greedy refinement. The approach constructs local reduced bases of lower dimensionality than global ones, with the same or higher accuracy. These “light” local bases should imply both faster evaluations when predicting new waveforms and faster data analysis, particularly faster statistical inference (the forward and inverse problems, respectively). In this approach, however, we have previously found important dependence on several hyperparameters, which do not appear in a global reduced basis. This naturally leads to the problem of hyperparameter optimization (HPO), which is the subject of this paper. Here, we compare the efficiency of the Bayesian approach against grid and random searches, which are two order of magnitude slower. Then, we tackle the problem of HPO through Bayesian optimization.We find that, for the cases studied here of gravitational waves from the collision of two spinning but non-precessing black holes, for the same accuracy, local hp-greedy reduced bases with HPO have a lower dimensionality of up to 4×, depending on the desired accuracy. This factor should directly translate into a parameter estimation speedup in the context of reduced order quadratures, for instance. Such acceleration might help in the near real-time requirements for electromagnetic counterparts of gravitational waves from compact binary coalescences. The code developed for this project is available open source from public repositories. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260856 Cerino, Franco; Diaz Pace, Jorge Andres; Tassone, Emmanuel Agustin; Tiglio, Manuel; Villegas, Atuel; Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates; MDPI; Universe; 10; 1; 1-2024; 1-14 2218-1997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260856 |
identifier_str_mv |
Cerino, Franco; Diaz Pace, Jorge Andres; Tassone, Emmanuel Agustin; Tiglio, Manuel; Villegas, Atuel; Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates; MDPI; Universe; 10; 1; 1-2024; 1-14 2218-1997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2218-1997/10/1/6 info:eu-repo/semantics/altIdentifier/doi/10.3390/universe10010006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606440467496960 |
score |
13.001348 |