Glass transition and heat capacitybehaviors of plant vitrification solutions

Autores
Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena; Molina García, Antonio D.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.
Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España
Fil: Faltus, Milos. Crop Research Institute; República Checa
Fil: Zámečníkc, JirI. Crop Research Institute; República Checa
Fil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; España
Fil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España
Materia
DSC
Plant vitrification solution
TG
∆Cp
Cryopreservation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10550

id CONICETDig_7e19a2252858dbb9611a3c733b1617cc
oai_identifier_str oai:ri.conicet.gov.ar:11336/10550
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Glass transition and heat capacitybehaviors of plant vitrification solutionsSchneider Teixeira, AlineFaltus, MilosZámečníkc, JirIGonzalez Benito, Maria Elena Molina García, Antonio D. DSCPlant vitrification solutionTG∆CpCryopreservationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Faltus, Milos. Crop Research Institute; República ChecaFil: Zámečníkc, JirI. Crop Research Institute; República ChecaFil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; EspañaFil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaElsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10550Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–490040-6031enginfo:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.tca.2014.08.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:42Zoai:ri.conicet.gov.ar:11336/10550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:42.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Glass transition and heat capacitybehaviors of plant vitrification solutions
title Glass transition and heat capacitybehaviors of plant vitrification solutions
spellingShingle Glass transition and heat capacitybehaviors of plant vitrification solutions
Schneider Teixeira, Aline
DSC
Plant vitrification solution
TG
∆Cp
Cryopreservation
title_short Glass transition and heat capacitybehaviors of plant vitrification solutions
title_full Glass transition and heat capacitybehaviors of plant vitrification solutions
title_fullStr Glass transition and heat capacitybehaviors of plant vitrification solutions
title_full_unstemmed Glass transition and heat capacitybehaviors of plant vitrification solutions
title_sort Glass transition and heat capacitybehaviors of plant vitrification solutions
dc.creator.none.fl_str_mv Schneider Teixeira, Aline
Faltus, Milos
Zámečníkc, JirI
Gonzalez Benito, Maria Elena
Molina García, Antonio D.
author Schneider Teixeira, Aline
author_facet Schneider Teixeira, Aline
Faltus, Milos
Zámečníkc, JirI
Gonzalez Benito, Maria Elena
Molina García, Antonio D.
author_role author
author2 Faltus, Milos
Zámečníkc, JirI
Gonzalez Benito, Maria Elena
Molina García, Antonio D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv DSC
Plant vitrification solution
TG
∆Cp
Cryopreservation
topic DSC
Plant vitrification solution
TG
∆Cp
Cryopreservation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.
Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España
Fil: Faltus, Milos. Crop Research Institute; República Checa
Fil: Zámečníkc, JirI. Crop Research Institute; República Checa
Fil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; España
Fil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España
description Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10550
Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–49
0040-6031
url http://hdl.handle.net/11336/10550
identifier_str_mv Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–49
0040-6031
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.tca.2014.08.015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270013885513728
score 13.13397