Glass transition and heat capacitybehaviors of plant vitrification solutions
- Autores
- Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena; Molina García, Antonio D.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.
Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España
Fil: Faltus, Milos. Crop Research Institute; República Checa
Fil: Zámečníkc, JirI. Crop Research Institute; República Checa
Fil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; España
Fil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España - Materia
-
DSC
Plant vitrification solution
TG
∆Cp
Cryopreservation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10550
Ver los metadatos del registro completo
id |
CONICETDig_7e19a2252858dbb9611a3c733b1617cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Glass transition and heat capacitybehaviors of plant vitrification solutionsSchneider Teixeira, AlineFaltus, MilosZámečníkc, JirIGonzalez Benito, Maria Elena Molina García, Antonio D. DSCPlant vitrification solutionTG∆CpCryopreservationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials.Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaFil: Faltus, Milos. Crop Research Institute; República ChecaFil: Zámečníkc, JirI. Crop Research Institute; República ChecaFil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; EspañaFil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; EspañaElsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10550Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–490040-6031enginfo:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.tca.2014.08.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:42Zoai:ri.conicet.gov.ar:11336/10550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:42.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
title |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
spellingShingle |
Glass transition and heat capacitybehaviors of plant vitrification solutions Schneider Teixeira, Aline DSC Plant vitrification solution TG ∆Cp Cryopreservation |
title_short |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
title_full |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
title_fullStr |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
title_full_unstemmed |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
title_sort |
Glass transition and heat capacitybehaviors of plant vitrification solutions |
dc.creator.none.fl_str_mv |
Schneider Teixeira, Aline Faltus, Milos Zámečníkc, JirI Gonzalez Benito, Maria Elena Molina García, Antonio D. |
author |
Schneider Teixeira, Aline |
author_facet |
Schneider Teixeira, Aline Faltus, Milos Zámečníkc, JirI Gonzalez Benito, Maria Elena Molina García, Antonio D. |
author_role |
author |
author2 |
Faltus, Milos Zámečníkc, JirI Gonzalez Benito, Maria Elena Molina García, Antonio D. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DSC Plant vitrification solution TG ∆Cp Cryopreservation |
topic |
DSC Plant vitrification solution TG ∆Cp Cryopreservation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials. Fil: Schneider Teixeira, Aline. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España Fil: Faltus, Milos. Crop Research Institute; República Checa Fil: Zámečníkc, JirI. Crop Research Institute; República Checa Fil: Gonzalez Benito, Maria Elena . Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos de Madrid; España Fil: Molina García, Antonio D. . Consejo Superior de Investigaciones Científicas. Instituto de Ciencia y Tecnologia de Alimentos y Nutrición; España |
description |
Differential scanning calorimetry (DSC) was employed to investigate the vitrification and annealing behaviors of the most commonly used plant vitrification solutions (PVS). These solutions are employed to protect plant tissues towards ice formation and freeze injury, and help to the vitrification of these tissues, by globally reducing the intracellular fluids mobility. Glass transition temperatures (Tg) and heat capacity increments (∆Cp) were determined for five solutions PVS1, PVS2, PVS2 mod, PVS3 and PVS3 mod, with different composition, and a range of cooling and warming rates was employed. Glass transitions showed clear and consistent temperature differences within vitrification solutions, which could be related to composition and water content. Roughly, two sets of TG values were obtained, those for PVS1 and 2, at -112 ºC and -114 ºC, respectively, and those for PSV3, at -90 ºC. The observed Tg and ∆Cp, unexpectedly, did not significantly change within a wide range of cooling rates (from 5 ºC min-1 to liquid nitrogen quenching) and warming rates (from 5 to 20 ºC). Garlic shoot tips cryopreserved after the droplet method produced a similar result to that of the vitrification solutions employed. After quench cooling to temperatures below Tg, repeated excursions to higher temperatures were made and the cooling and warming Tg were recorded. These treatments had little or no effect over the PVS solutions Tg, which remained practically constant. A direct practical consequence is that the plant vitrification solutions glass transition temperature does not significantly change with cryopreservation methods based on either direct plunging of samples into liquid nitrogen or employing closed cryovials. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10550 Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–49 0040-6031 |
url |
http://hdl.handle.net/11336/10550 |
identifier_str_mv |
Schneider Teixeira, Aline; Faltus, Milos; Zámečníkc, JirI; Gonzalez Benito, Maria Elena ; Molina García, Antonio D. ; Glass transition and heat capacitybehaviors of plant vitrification solutions; Elsevier Science; Thermochimica Acta; 593; 10-2014; 43–49 0040-6031 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/doi:10.1016/j.tca.2014.08.015 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270013885513728 |
score |
13.13397 |