FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils
- Autores
- Rodríguez, Silvio David; Gagneten, Maite; Farroni, Abel Eduardo; Percibaldi, Nora Mabel; Buera, María del Pilar
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%.
EEA Pergamino
Fil: Rodríguez, Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); Argentina
Fil: Farroni, Abel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; Argentina
Fil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; Argenina
Fil: Buera, María del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); Argentina - Fuente
- Food Control 105 : 78-85 (November 2019)
- Materia
-
Calidad de los Alimentos
Salvia (género)
Aceite de Sésamo
Adulteración de Alimentos
Análisis
Food Quality
Salvia
Sesame Oil
Food Adulteration
Analysis
Análisis no dirigido
Aceite de chía - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/5224
Ver los metadatos del registro completo
id |
INTADig_40708cf5ea7d7d4bd3d226604476adbb |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/5224 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oilsRodríguez, Silvio DavidGagneten, MaiteFarroni, Abel EduardoPercibaldi, Nora MabelBuera, María del PilarCalidad de los AlimentosSalvia (género)Aceite de SésamoAdulteración de AlimentosAnálisisFood QualitySalviaSesame OilFood AdulterationAnalysisAnálisis no dirigidoAceite de chíaChia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%.EEA PergaminoFil: Rodríguez, Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); ArgentinaFil: Farroni, Abel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; ArgentinaFil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; ArgeninaFil: Buera, María del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); ArgentinaElsevier2019-05-30T14:52:46Z2019-05-30T14:52:46Z2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S0956713519302336http://hdl.handle.net/20.500.12123/52240956-7135 (digital)https://doi.org/10.1016/j.foodcont.2019.05.025Food Control 105 : 78-85 (November 2019)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:47:58Zoai:localhost:20.500.12123/5224instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:59.465INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
spellingShingle |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils Rodríguez, Silvio David Calidad de los Alimentos Salvia (género) Aceite de Sésamo Adulteración de Alimentos Análisis Food Quality Salvia Sesame Oil Food Adulteration Analysis Análisis no dirigido Aceite de chía |
title_short |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_full |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_fullStr |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_full_unstemmed |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_sort |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
dc.creator.none.fl_str_mv |
Rodríguez, Silvio David Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, María del Pilar |
author |
Rodríguez, Silvio David |
author_facet |
Rodríguez, Silvio David Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, María del Pilar |
author_role |
author |
author2 |
Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, María del Pilar |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Calidad de los Alimentos Salvia (género) Aceite de Sésamo Adulteración de Alimentos Análisis Food Quality Salvia Sesame Oil Food Adulteration Analysis Análisis no dirigido Aceite de chía |
topic |
Calidad de los Alimentos Salvia (género) Aceite de Sésamo Adulteración de Alimentos Análisis Food Quality Salvia Sesame Oil Food Adulteration Analysis Análisis no dirigido Aceite de chía |
dc.description.none.fl_txt_mv |
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%. EEA Pergamino Fil: Rodríguez, Silvio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); Argentina Fil: Farroni, Abel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; Argentina Fil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Calidad de Alimentos, Suelos y Aguas; Argenina Fil: Buera, María del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Instituto de Alimentos y Procesos Químicos (ITAPROQ); Argentina |
description |
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-30T14:52:46Z 2019-05-30T14:52:46Z 2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0956713519302336 http://hdl.handle.net/20.500.12123/5224 0956-7135 (digital) https://doi.org/10.1016/j.foodcont.2019.05.025 |
url |
https://www.sciencedirect.com/science/article/pii/S0956713519302336 http://hdl.handle.net/20.500.12123/5224 https://doi.org/10.1016/j.foodcont.2019.05.025 |
identifier_str_mv |
0956-7135 (digital) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Food Control 105 : 78-85 (November 2019) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341366736093184 |
score |
12.623145 |