Schur complements in Krein spaces
- Autores
- Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
KREIN SPACES
SCHUR COMPLEMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100306
Ver los metadatos del registro completo
| id |
CONICETDig_971707962f460fd7dd49c4fc00b1b2ae |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100306 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Schur complements in Krein spacesMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoKREIN SPACESSCHUR COMPLEMENThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100306Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-2210378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-007-1523-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:42:26Zoai:ri.conicet.gov.ar:11336/100306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:42:26.47CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Schur complements in Krein spaces |
| title |
Schur complements in Krein spaces |
| spellingShingle |
Schur complements in Krein spaces Maestripieri, Alejandra Laura KREIN SPACES SCHUR COMPLEMENT |
| title_short |
Schur complements in Krein spaces |
| title_full |
Schur complements in Krein spaces |
| title_fullStr |
Schur complements in Krein spaces |
| title_full_unstemmed |
Schur complements in Krein spaces |
| title_sort |
Schur complements in Krein spaces |
| dc.creator.none.fl_str_mv |
Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
| author |
Maestripieri, Alejandra Laura |
| author_facet |
Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
| author_role |
author |
| author2 |
Martinez Peria, Francisco Dardo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
KREIN SPACES SCHUR COMPLEMENT |
| topic |
KREIN SPACES SCHUR COMPLEMENT |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space. Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100306 Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221 0378-620X 1420-8989 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100306 |
| identifier_str_mv |
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221 0378-620X 1420-8989 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-007-1523-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-z info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976996338925568 |
| score |
13.087074 |