Schur complements in Krein spaces

Autores
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
KREIN SPACES
SCHUR COMPLEMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100306

id CONICETDig_971707962f460fd7dd49c4fc00b1b2ae
oai_identifier_str oai:ri.conicet.gov.ar:11336/100306
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Schur complements in Krein spacesMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoKREIN SPACESSCHUR COMPLEMENThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100306Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-2210378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-007-1523-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:53Zoai:ri.conicet.gov.ar:11336/100306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:53.451CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Schur complements in Krein spaces
title Schur complements in Krein spaces
spellingShingle Schur complements in Krein spaces
Maestripieri, Alejandra Laura
KREIN SPACES
SCHUR COMPLEMENT
title_short Schur complements in Krein spaces
title_full Schur complements in Krein spaces
title_fullStr Schur complements in Krein spaces
title_full_unstemmed Schur complements in Krein spaces
title_sort Schur complements in Krein spaces
dc.creator.none.fl_str_mv Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author Maestripieri, Alejandra Laura
author_facet Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author_role author
author2 Martinez Peria, Francisco Dardo
author2_role author
dc.subject.none.fl_str_mv KREIN SPACES
SCHUR COMPLEMENT
topic KREIN SPACES
SCHUR COMPLEMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Martinez Peria, Francisco Dardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description The aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100306
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221
0378-620X
1420-8989
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100306
identifier_str_mv Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221
0378-620X
1420-8989
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-007-1523-z
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-z
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268887769415680
score 13.13397