Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces
- Autores
- Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a Krein space H and B, C in L(H), L(H), the bounded linear operators on H, the minimization/maximization of expressions of the form (BX−C)#(BX−C) as X runs over L(H) is studied. Complete solutions are found for the problems posed, including solvability criteria and a characterization of the solutions when they exist. Min-max problems associated to Krein space decompositions of B are also considered, leading to a characterization of the Moore-Penrose inverse as the unique solution of a variational problem. Other generalized inverses are similarly described.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Venezolano de Investigaciones Científicas; Venezuela - Materia
-
OPERATOR APPROXIMATION
KREIN SPACES
MOORE-PENROSE INVERSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88408
Ver los metadatos del registro completo
id |
CONICETDig_fb1ae2daddb0619d856173efe6bfc9fc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88408 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein SpacesContino, MaximilianoMaestripieri, Alejandra LauraMarcantognini Palacios, Stefania Alma MaríaOPERATOR APPROXIMATIONKREIN SPACESMOORE-PENROSE INVERSEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Krein space H and B, C in L(H), L(H), the bounded linear operators on H, the minimization/maximization of expressions of the form (BX−C)#(BX−C) as X runs over L(H) is studied. Complete solutions are found for the problems posed, including solvability criteria and a characterization of the solutions when they exist. Min-max problems associated to Krein space decompositions of B are also considered, leading to a characterization of the Moore-Penrose inverse as the unique solution of a variational problem. Other generalized inverses are similarly described.Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Venezolano de Investigaciones Científicas; VenezuelaBirkhauser Verlag Ag2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88408Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 90; 3; 6-2018; 1-230378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00020-018-2456-4info:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs00020-018-2456-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08787info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:14Zoai:ri.conicet.gov.ar:11336/88408instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:15.271CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
title |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
spellingShingle |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces Contino, Maximiliano OPERATOR APPROXIMATION KREIN SPACES MOORE-PENROSE INVERSES |
title_short |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
title_full |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
title_fullStr |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
title_full_unstemmed |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
title_sort |
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces |
dc.creator.none.fl_str_mv |
Contino, Maximiliano Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author |
Contino, Maximiliano |
author_facet |
Contino, Maximiliano Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author2_role |
author author |
dc.subject.none.fl_str_mv |
OPERATOR APPROXIMATION KREIN SPACES MOORE-PENROSE INVERSES |
topic |
OPERATOR APPROXIMATION KREIN SPACES MOORE-PENROSE INVERSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a Krein space H and B, C in L(H), L(H), the bounded linear operators on H, the minimization/maximization of expressions of the form (BX−C)#(BX−C) as X runs over L(H) is studied. Complete solutions are found for the problems posed, including solvability criteria and a characterization of the solutions when they exist. Min-max problems associated to Krein space decompositions of B are also considered, leading to a characterization of the Moore-Penrose inverse as the unique solution of a variational problem. Other generalized inverses are similarly described. Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Venezolano de Investigaciones Científicas; Venezuela |
description |
Given a Krein space H and B, C in L(H), L(H), the bounded linear operators on H, the minimization/maximization of expressions of the form (BX−C)#(BX−C) as X runs over L(H) is studied. Complete solutions are found for the problems posed, including solvability criteria and a characterization of the solutions when they exist. Min-max problems associated to Krein space decompositions of B are also considered, leading to a characterization of the Moore-Penrose inverse as the unique solution of a variational problem. Other generalized inverses are similarly described. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88408 Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 90; 3; 6-2018; 1-23 0378-620X 1420-8989 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88408 |
identifier_str_mv |
Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 90; 3; 6-2018; 1-23 0378-620X 1420-8989 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00020-018-2456-4 info:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs00020-018-2456-4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08787 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269949252337664 |
score |
13.13397 |