The Alekseevskii conjecture in low dimensions
- Autores
- Arroyo, Romina Melisa; Lafuente, Ramiro Augusto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.
Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; Alemania - Materia
-
ALEKSEEVSKII CONJECTURE
LOW DIMENSIONS
EINSTEIN METRICS
NON-COMPACT HOMOGENEOUS SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59984
Ver los metadatos del registro completo
| id |
CONICETDig_47f09bade8d7ef77e2b13874c249d6b0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59984 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The Alekseevskii conjecture in low dimensionsArroyo, Romina MelisaLafuente, Ramiro AugustoALEKSEEVSKII CONJECTURELOW DIMENSIONSEINSTEIN METRICSNON-COMPACT HOMOGENEOUS SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; AlemaniaSpringer2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59984Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-3090025-5831CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-016-1386-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:29:43Zoai:ri.conicet.gov.ar:11336/59984instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:29:43.977CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The Alekseevskii conjecture in low dimensions |
| title |
The Alekseevskii conjecture in low dimensions |
| spellingShingle |
The Alekseevskii conjecture in low dimensions Arroyo, Romina Melisa ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
| title_short |
The Alekseevskii conjecture in low dimensions |
| title_full |
The Alekseevskii conjecture in low dimensions |
| title_fullStr |
The Alekseevskii conjecture in low dimensions |
| title_full_unstemmed |
The Alekseevskii conjecture in low dimensions |
| title_sort |
The Alekseevskii conjecture in low dimensions |
| dc.creator.none.fl_str_mv |
Arroyo, Romina Melisa Lafuente, Ramiro Augusto |
| author |
Arroyo, Romina Melisa |
| author_facet |
Arroyo, Romina Melisa Lafuente, Ramiro Augusto |
| author_role |
author |
| author2 |
Lafuente, Ramiro Augusto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
| topic |
ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8. Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; Alemania |
| description |
The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59984 Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309 0025-5831 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59984 |
| identifier_str_mv |
Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309 0025-5831 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-016-1386-1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781885191028736 |
| score |
12.982451 |