The Alekseevskii conjecture in low dimensions
- Autores
- Arroyo, Romina Melisa; Lafuente, Ramiro Augusto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.
Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; Alemania - Materia
-
ALEKSEEVSKII CONJECTURE
LOW DIMENSIONS
EINSTEIN METRICS
NON-COMPACT HOMOGENEOUS SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59984
Ver los metadatos del registro completo
id |
CONICETDig_47f09bade8d7ef77e2b13874c249d6b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59984 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Alekseevskii conjecture in low dimensionsArroyo, Romina MelisaLafuente, Ramiro AugustoALEKSEEVSKII CONJECTURELOW DIMENSIONSEINSTEIN METRICSNON-COMPACT HOMOGENEOUS SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; AlemaniaSpringer2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59984Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-3090025-5831CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-016-1386-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:15Zoai:ri.conicet.gov.ar:11336/59984instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:15.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Alekseevskii conjecture in low dimensions |
title |
The Alekseevskii conjecture in low dimensions |
spellingShingle |
The Alekseevskii conjecture in low dimensions Arroyo, Romina Melisa ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
title_short |
The Alekseevskii conjecture in low dimensions |
title_full |
The Alekseevskii conjecture in low dimensions |
title_fullStr |
The Alekseevskii conjecture in low dimensions |
title_full_unstemmed |
The Alekseevskii conjecture in low dimensions |
title_sort |
The Alekseevskii conjecture in low dimensions |
dc.creator.none.fl_str_mv |
Arroyo, Romina Melisa Lafuente, Ramiro Augusto |
author |
Arroyo, Romina Melisa |
author_facet |
Arroyo, Romina Melisa Lafuente, Ramiro Augusto |
author_role |
author |
author2 |
Lafuente, Ramiro Augusto |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
topic |
ALEKSEEVSKII CONJECTURE LOW DIMENSIONS EINSTEIN METRICS NON-COMPACT HOMOGENEOUS SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8. Fil: Arroyo, Romina Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Lafuente, Ramiro Augusto. Westfalische Wilhelms Universitat; Alemania |
description |
The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59984 Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309 0025-5831 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59984 |
identifier_str_mv |
Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309 0025-5831 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-016-1386-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269394372132864 |
score |
13.13397 |