When data do not bring information: A case study in markov random fields estimation
- Autores
- Gimenez Romero, Javier Alejandro; Frery, Alejandro César; Flesia, Ana Georgina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter β, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for β. The estimation of such parameter can be efficiently made solving the pseudo maximum-likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, whereas the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean-square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML; moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias.
Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Potts Model
Pseudo-Likelihood
Segmentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38298
Ver los metadatos del registro completo
id |
CONICETDig_05f8431028dcbe08a0fffb173d5ad3c2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38298 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
When data do not bring information: A case study in markov random fields estimationGimenez Romero, Javier AlejandroFrery, Alejandro CésarFlesia, Ana GeorginaPotts ModelPseudo-LikelihoodSegmentationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter β, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for β. The estimation of such parameter can be efficiently made solving the pseudo maximum-likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, whereas the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean-square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML; moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias.Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitute of Electrical and Electronics Engineers2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38298Gimenez Romero, Javier Alejandro; Frery, Alejandro César; Flesia, Ana Georgina; When data do not bring information: A case study in markov random fields estimation; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 8; 1; 1-2015; 195-2031939-1404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2014.2323713info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6869017/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:40:06Zoai:ri.conicet.gov.ar:11336/38298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:40:06.476CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
When data do not bring information: A case study in markov random fields estimation |
title |
When data do not bring information: A case study in markov random fields estimation |
spellingShingle |
When data do not bring information: A case study in markov random fields estimation Gimenez Romero, Javier Alejandro Potts Model Pseudo-Likelihood Segmentation |
title_short |
When data do not bring information: A case study in markov random fields estimation |
title_full |
When data do not bring information: A case study in markov random fields estimation |
title_fullStr |
When data do not bring information: A case study in markov random fields estimation |
title_full_unstemmed |
When data do not bring information: A case study in markov random fields estimation |
title_sort |
When data do not bring information: A case study in markov random fields estimation |
dc.creator.none.fl_str_mv |
Gimenez Romero, Javier Alejandro Frery, Alejandro César Flesia, Ana Georgina |
author |
Gimenez Romero, Javier Alejandro |
author_facet |
Gimenez Romero, Javier Alejandro Frery, Alejandro César Flesia, Ana Georgina |
author_role |
author |
author2 |
Frery, Alejandro César Flesia, Ana Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Potts Model Pseudo-Likelihood Segmentation |
topic |
Potts Model Pseudo-Likelihood Segmentation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter β, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for β. The estimation of such parameter can be efficiently made solving the pseudo maximum-likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, whereas the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean-square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML; moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias. Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter β, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for β. The estimation of such parameter can be efficiently made solving the pseudo maximum-likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, whereas the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean-square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML; moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38298 Gimenez Romero, Javier Alejandro; Frery, Alejandro César; Flesia, Ana Georgina; When data do not bring information: A case study in markov random fields estimation; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 8; 1; 1-2015; 195-203 1939-1404 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38298 |
identifier_str_mv |
Gimenez Romero, Javier Alejandro; Frery, Alejandro César; Flesia, Ana Georgina; When data do not bring information: A case study in markov random fields estimation; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 8; 1; 1-2015; 195-203 1939-1404 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTARS.2014.2323713 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6869017/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082890802135040 |
score |
13.22299 |