On distance sets, box-counting and Ahlfors regular sets
- Autores
- Shmerkin, Pablo Sebastian
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain box-counting estimates for the pinned distance sets of (dense subsets of) planar discrete Ahlfors-regular sets of exponent s > 1. As a corollary, we improve upon a recent result of Orponen, by showing that if A is Ahlfors-regular of dimension s > 1, then almost all pinned distance sets of A have lower box-counting dimension 1. We also show that if A,B ⊂ R 2 have Hausdorff dimension greater than 1 and A is Ahlfors-regular, then the set of distances between A and B has modified lower box-counting dimension 1, which taking B = A improves Orponen’s result in a different direction, by lowering packing dimension to modified lower box-counting dimension. The proofs involve ergodic-theoretic ideas, relying on the theory of CP-processes and projections.
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
Distance sets
Box dimension
Ahlfors-regular sets
CP-processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77253
Ver los metadatos del registro completo
id |
CONICETDig_6c8fb29ce6585bdda3df26358ca04ec5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77253 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On distance sets, box-counting and Ahlfors regular setsShmerkin, Pablo SebastianDistance setsBox dimensionAhlfors-regular setsCP-processeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain box-counting estimates for the pinned distance sets of (dense subsets of) planar discrete Ahlfors-regular sets of exponent s > 1. As a corollary, we improve upon a recent result of Orponen, by showing that if A is Ahlfors-regular of dimension s > 1, then almost all pinned distance sets of A have lower box-counting dimension 1. We also show that if A,B ⊂ R 2 have Hausdorff dimension greater than 1 and A is Ahlfors-regular, then the set of distances between A and B has modified lower box-counting dimension 1, which taking B = A improves Orponen’s result in a different direction, by lowering packing dimension to modified lower box-counting dimension. The proofs involve ergodic-theoretic ideas, relying on the theory of CP-processes and projections.Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaAlliance of Diamond Open Access Journals2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77253Shmerkin, Pablo Sebastian; On distance sets, box-counting and Ahlfors regular sets; Alliance of Diamond Open Access Journals; Discrete Analysis; 2017; 9; 5-2017; 1-222397-3129CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://discreteanalysisjournal.com/article/1643-on-distance-sets-box-counting-and-ahlfors-regular-setinfo:eu-repo/semantics/altIdentifier/doi/10.19086/da.1643info:eu-repo/semantics/altIdentifier/arxiv/arXiv:1605.00187info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:31Zoai:ri.conicet.gov.ar:11336/77253instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:31.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On distance sets, box-counting and Ahlfors regular sets |
title |
On distance sets, box-counting and Ahlfors regular sets |
spellingShingle |
On distance sets, box-counting and Ahlfors regular sets Shmerkin, Pablo Sebastian Distance sets Box dimension Ahlfors-regular sets CP-processes |
title_short |
On distance sets, box-counting and Ahlfors regular sets |
title_full |
On distance sets, box-counting and Ahlfors regular sets |
title_fullStr |
On distance sets, box-counting and Ahlfors regular sets |
title_full_unstemmed |
On distance sets, box-counting and Ahlfors regular sets |
title_sort |
On distance sets, box-counting and Ahlfors regular sets |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian |
author_role |
author |
dc.subject.none.fl_str_mv |
Distance sets Box dimension Ahlfors-regular sets CP-processes |
topic |
Distance sets Box dimension Ahlfors-regular sets CP-processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain box-counting estimates for the pinned distance sets of (dense subsets of) planar discrete Ahlfors-regular sets of exponent s > 1. As a corollary, we improve upon a recent result of Orponen, by showing that if A is Ahlfors-regular of dimension s > 1, then almost all pinned distance sets of A have lower box-counting dimension 1. We also show that if A,B ⊂ R 2 have Hausdorff dimension greater than 1 and A is Ahlfors-regular, then the set of distances between A and B has modified lower box-counting dimension 1, which taking B = A improves Orponen’s result in a different direction, by lowering packing dimension to modified lower box-counting dimension. The proofs involve ergodic-theoretic ideas, relying on the theory of CP-processes and projections. Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
We obtain box-counting estimates for the pinned distance sets of (dense subsets of) planar discrete Ahlfors-regular sets of exponent s > 1. As a corollary, we improve upon a recent result of Orponen, by showing that if A is Ahlfors-regular of dimension s > 1, then almost all pinned distance sets of A have lower box-counting dimension 1. We also show that if A,B ⊂ R 2 have Hausdorff dimension greater than 1 and A is Ahlfors-regular, then the set of distances between A and B has modified lower box-counting dimension 1, which taking B = A improves Orponen’s result in a different direction, by lowering packing dimension to modified lower box-counting dimension. The proofs involve ergodic-theoretic ideas, relying on the theory of CP-processes and projections. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77253 Shmerkin, Pablo Sebastian; On distance sets, box-counting and Ahlfors regular sets; Alliance of Diamond Open Access Journals; Discrete Analysis; 2017; 9; 5-2017; 1-22 2397-3129 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77253 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; On distance sets, box-counting and Ahlfors regular sets; Alliance of Diamond Open Access Journals; Discrete Analysis; 2017; 9; 5-2017; 1-22 2397-3129 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://discreteanalysisjournal.com/article/1643-on-distance-sets-box-counting-and-ahlfors-regular-set info:eu-repo/semantics/altIdentifier/doi/10.19086/da.1643 info:eu-repo/semantics/altIdentifier/arxiv/arXiv:1605.00187 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Alliance of Diamond Open Access Journals |
publisher.none.fl_str_mv |
Alliance of Diamond Open Access Journals |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269035812618240 |
score |
13.13397 |