Nichols algebras over groups with finite root system of rank two III
- Autores
- Heckenberger, I.; Vendramin, Claudio Leandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Hopf Algebras
Nichols Algebras
Weyl Groupoids - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59874
Ver los metadatos del registro completo
id |
CONICETDig_7554fce05595fecebb5da3f3d905559b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59874 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nichols algebras over groups with finite root system of rank two IIIHeckenberger, I.Vendramin, Claudio LeandroHopf AlgebrasNichols AlgebrasWeyl Groupoidshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59874Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-2560021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.09.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314005201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:20Zoai:ri.conicet.gov.ar:11336/59874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:20.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nichols algebras over groups with finite root system of rank two III |
title |
Nichols algebras over groups with finite root system of rank two III |
spellingShingle |
Nichols algebras over groups with finite root system of rank two III Heckenberger, I. Hopf Algebras Nichols Algebras Weyl Groupoids |
title_short |
Nichols algebras over groups with finite root system of rank two III |
title_full |
Nichols algebras over groups with finite root system of rank two III |
title_fullStr |
Nichols algebras over groups with finite root system of rank two III |
title_full_unstemmed |
Nichols algebras over groups with finite root system of rank two III |
title_sort |
Nichols algebras over groups with finite root system of rank two III |
dc.creator.none.fl_str_mv |
Heckenberger, I. Vendramin, Claudio Leandro |
author |
Heckenberger, I. |
author_facet |
Heckenberger, I. Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Vendramin, Claudio Leandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hopf Algebras Nichols Algebras Weyl Groupoids |
topic |
Hopf Algebras Nichols Algebras Weyl Groupoids |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups. Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59874 Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-256 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59874 |
identifier_str_mv |
Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-256 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.09.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314005201 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781801014493184 |
score |
13.199325 |