Nichols algebras over groups with finite root system of rank two III

Autores
Heckenberger, I.; Vendramin, Claudio Leandro
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Hopf Algebras
Nichols Algebras
Weyl Groupoids
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59874

id CONICETDig_7554fce05595fecebb5da3f3d905559b
oai_identifier_str oai:ri.conicet.gov.ar:11336/59874
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nichols algebras over groups with finite root system of rank two IIIHeckenberger, I.Vendramin, Claudio LeandroHopf AlgebrasNichols AlgebrasWeyl Groupoidshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59874Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-2560021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.09.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314005201info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:20Zoai:ri.conicet.gov.ar:11336/59874instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:20.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nichols algebras over groups with finite root system of rank two III
title Nichols algebras over groups with finite root system of rank two III
spellingShingle Nichols algebras over groups with finite root system of rank two III
Heckenberger, I.
Hopf Algebras
Nichols Algebras
Weyl Groupoids
title_short Nichols algebras over groups with finite root system of rank two III
title_full Nichols algebras over groups with finite root system of rank two III
title_fullStr Nichols algebras over groups with finite root system of rank two III
title_full_unstemmed Nichols algebras over groups with finite root system of rank two III
title_sort Nichols algebras over groups with finite root system of rank two III
dc.creator.none.fl_str_mv Heckenberger, I.
Vendramin, Claudio Leandro
author Heckenberger, I.
author_facet Heckenberger, I.
Vendramin, Claudio Leandro
author_role author
author2 Vendramin, Claudio Leandro
author2_role author
dc.subject.none.fl_str_mv Hopf Algebras
Nichols Algebras
Weyl Groupoids
topic Hopf Algebras
Nichols Algebras
Weyl Groupoids
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We compute the finite-dimensional Nichols algebras over the sum of two simple Yetter-Drinfeld modules V and W over non-abelian epimorphic images of a certain central extension of the dihedral group of eight elements or SL(2, 3), and such that the Weyl groupoid of the pair (V, W) is finite. These central extensions appear in the classification of non-elementary finite-dimensional Nichols algebras with finite Weyl groupoid of rank two. We deduce new information on the structure of primitive elements of finite-dimensional Nichols algebras over groups.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59874
Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-256
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59874
identifier_str_mv Heckenberger, I.; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two III; Academic Press Inc Elsevier Science; Journal of Algebra; 422; 1-2015; 223-256
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.09.013
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314005201
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781801014493184
score 13.199325