Nichols algebras over groups with finite root system of rank two II
- Autores
- Heckenberger, István; Vendramin, Claudio Leandro
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W).
Fil: Heckenberger, István. Philipps Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Nichols algebras
Weyl groupoids
Root systems
Hopf algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33077
Ver los metadatos del registro completo
| id |
CONICETDig_54b73105c499ba6c15d37f2c06812bb3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33077 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nichols algebras over groups with finite root system of rank two IIHeckenberger, IstvánVendramin, Claudio LeandroNichols algebrasWeyl groupoidsRoot systemsHopf algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W).Fil: Heckenberger, István. Philipps Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDe Gruyter2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33077Heckenberger, István; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two II; De Gruyter; Journal Of Group Theory; 17; 6; 5-2014; 1009-10341433-58831435-4446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/jgth-2014-0024info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jgth.ahead-of-print/jgth-2014-0024/jgth-2014-0024.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:49:08Zoai:ri.conicet.gov.ar:11336/33077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:49:08.871CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nichols algebras over groups with finite root system of rank two II |
| title |
Nichols algebras over groups with finite root system of rank two II |
| spellingShingle |
Nichols algebras over groups with finite root system of rank two II Heckenberger, István Nichols algebras Weyl groupoids Root systems Hopf algebras |
| title_short |
Nichols algebras over groups with finite root system of rank two II |
| title_full |
Nichols algebras over groups with finite root system of rank two II |
| title_fullStr |
Nichols algebras over groups with finite root system of rank two II |
| title_full_unstemmed |
Nichols algebras over groups with finite root system of rank two II |
| title_sort |
Nichols algebras over groups with finite root system of rank two II |
| dc.creator.none.fl_str_mv |
Heckenberger, István Vendramin, Claudio Leandro |
| author |
Heckenberger, István |
| author_facet |
Heckenberger, István Vendramin, Claudio Leandro |
| author_role |
author |
| author2 |
Vendramin, Claudio Leandro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Nichols algebras Weyl groupoids Root systems Hopf algebras |
| topic |
Nichols algebras Weyl groupoids Root systems Hopf algebras |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W). Fil: Heckenberger, István. Philipps Universität Marburg; Alemania Fil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W). |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33077 Heckenberger, István; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two II; De Gruyter; Journal Of Group Theory; 17; 6; 5-2014; 1009-1034 1433-5883 1435-4446 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33077 |
| identifier_str_mv |
Heckenberger, István; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two II; De Gruyter; Journal Of Group Theory; 17; 6; 5-2014; 1009-1034 1433-5883 1435-4446 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/jgth-2014-0024 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jgth.ahead-of-print/jgth-2014-0024/jgth-2014-0024.xml |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
De Gruyter |
| publisher.none.fl_str_mv |
De Gruyter |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872709324898304 |
| score |
13.011256 |