Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type

Autores
Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
HOPF ALGEBRAS
NICHOLS ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172732

id CONICETDig_5e38ccd6bb9fd47672b7a0c6c4d4cf6c
oai_identifier_str oai:ri.conicet.gov.ar:11336/172732
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan typeAndruskiewitsch, NicolasSanmarco, Guillermo LuisHOPF ALGEBRASNICHOLS ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172732Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-3292330-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/btran/2021-08-10/S2330-0000-2021-00066-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/btran/66info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:14Zoai:ri.conicet.gov.ar:11336/172732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:15.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
title Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
spellingShingle Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
Andruskiewitsch, Nicolas
HOPF ALGEBRAS
NICHOLS ALGEBRAS
title_short Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
title_full Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
title_fullStr Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
title_full_unstemmed Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
title_sort Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolas
Sanmarco, Guillermo Luis
author Andruskiewitsch, Nicolas
author_facet Andruskiewitsch, Nicolas
Sanmarco, Guillermo Luis
author_role author
author2 Sanmarco, Guillermo Luis
author2_role author
dc.subject.none.fl_str_mv HOPF ALGEBRAS
NICHOLS ALGEBRAS
topic HOPF ALGEBRAS
NICHOLS ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172732
Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-329
2330-0000
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172732
identifier_str_mv Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-329
2330-0000
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/btran/2021-08-10/S2330-0000-2021-00066-7/
info:eu-repo/semantics/altIdentifier/doi/10.1090/btran/66
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083341429768192
score 13.221938