Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
- Autores
- Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.
Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
HOPF ALGEBRAS
NICHOLS ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172732
Ver los metadatos del registro completo
id |
CONICETDig_5e38ccd6bb9fd47672b7a0c6c4d4cf6c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172732 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan typeAndruskiewitsch, NicolasSanmarco, Guillermo LuisHOPF ALGEBRASNICHOLS ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one.Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172732Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-3292330-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/btran/2021-08-10/S2330-0000-2021-00066-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/btran/66info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:14Zoai:ri.conicet.gov.ar:11336/172732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:15.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
title |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
spellingShingle |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type Andruskiewitsch, Nicolas HOPF ALGEBRAS NICHOLS ALGEBRAS |
title_short |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
title_full |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
title_fullStr |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
title_full_unstemmed |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
title_sort |
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type |
dc.creator.none.fl_str_mv |
Andruskiewitsch, Nicolas Sanmarco, Guillermo Luis |
author |
Andruskiewitsch, Nicolas |
author_facet |
Andruskiewitsch, Nicolas Sanmarco, Guillermo Luis |
author_role |
author |
author2 |
Sanmarco, Guillermo Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
HOPF ALGEBRAS NICHOLS ALGEBRAS |
topic |
HOPF ALGEBRAS NICHOLS ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one. Fil: Andruskiewitsch, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Sanmarco, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as G2 at a third root of one. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172732 Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-329 2330-0000 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172732 |
identifier_str_mv |
Andruskiewitsch, Nicolas; Sanmarco, Guillermo Luis; Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type; American Mathematical Society; Transactions of the American Mathematical Society. Series B; 8; 10; 4-2021; 296-329 2330-0000 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/btran/2021-08-10/S2330-0000-2021-00066-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/btran/66 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083341429768192 |
score |
13.221938 |