A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups
- Autores
- Heckenberger, István; Vendramin, Claudio Leandro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs.
Fil: Heckenberger, István. Philipps Universitat Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Hopf Algebra
Nichols Algebra
Weyl Groupoid - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55447
Ver los metadatos del registro completo
id |
CONICETDig_70b276f710d095c480351ef6dd2e2b26 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55447 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groupsHeckenberger, IstvánVendramin, Claudio LeandroHopf AlgebraNichols AlgebraWeyl Groupoidhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs.Fil: Heckenberger, István. Philipps Universitat Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEuropean Mathematical Society2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55447Heckenberger, István; Vendramin, Claudio Leandro; A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups; European Mathematical Society; Journal of the European Mathematical Society; 19; 2; 2-2017; 299-3561435-9855CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/667info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=19&iss=2&rank=1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:38Zoai:ri.conicet.gov.ar:11336/55447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:38.801CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
title |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
spellingShingle |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups Heckenberger, István Hopf Algebra Nichols Algebra Weyl Groupoid |
title_short |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
title_full |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
title_fullStr |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
title_full_unstemmed |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
title_sort |
A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups |
dc.creator.none.fl_str_mv |
Heckenberger, István Vendramin, Claudio Leandro |
author |
Heckenberger, István |
author_facet |
Heckenberger, István Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Vendramin, Claudio Leandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hopf Algebra Nichols Algebra Weyl Groupoid |
topic |
Hopf Algebra Nichols Algebra Weyl Groupoid |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs. Fil: Heckenberger, István. Philipps Universitat Marburg; Alemania Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55447 Heckenberger, István; Vendramin, Claudio Leandro; A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups; European Mathematical Society; Journal of the European Mathematical Society; 19; 2; 2-2017; 299-356 1435-9855 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55447 |
identifier_str_mv |
Heckenberger, István; Vendramin, Claudio Leandro; A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups; European Mathematical Society; Journal of the European Mathematical Society; 19; 2; 2-2017; 299-356 1435-9855 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/667 info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=19&iss=2&rank=1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613313828225024 |
score |
13.070432 |