A family of singular ordinary differential equations of the third order with an integral boundary condition
- Autores
- Boukrouche, Mahdi; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.
Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95103
Ver los metadatos del registro completo
id |
CONICETDig_72f95111256266061542f5e65fd57ecc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95103 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A family of singular ordinary differential equations of the third order with an integral boundary conditionBoukrouche, MahdiTarzia, Domingo AlbertoEXPLICIT SOLUTIONINTEGRAL BOUNDARY CONDITIONNON-CLASSICAL HEAT EQUATIONSINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDERVOLTERRA INTEGRAL EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.Fil: Boukrouche, Mahdi. Universite Lyon 2; FranciaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95103Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-111687-2770CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:49Zoai:ri.conicet.gov.ar:11336/95103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:49.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
title |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
spellingShingle |
A family of singular ordinary differential equations of the third order with an integral boundary condition Boukrouche, Mahdi EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
title_short |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
title_full |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
title_fullStr |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
title_full_unstemmed |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
title_sort |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
dc.creator.none.fl_str_mv |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
author |
Boukrouche, Mahdi |
author_facet |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
topic |
EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem. Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
description |
We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95103 Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11 1687-2770 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95103 |
identifier_str_mv |
Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11 1687-2770 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-x info:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613119094030336 |
score |
13.070432 |