A family of singular ordinary differential equations of the third order with an integral boundary condition
- Autores
- Boukrouche, Mahdi; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.
Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95103
Ver los metadatos del registro completo
| id |
CONICETDig_72f95111256266061542f5e65fd57ecc |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95103 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A family of singular ordinary differential equations of the third order with an integral boundary conditionBoukrouche, MahdiTarzia, Domingo AlbertoEXPLICIT SOLUTIONINTEGRAL BOUNDARY CONDITIONNON-CLASSICAL HEAT EQUATIONSINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDERVOLTERRA INTEGRAL EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.Fil: Boukrouche, Mahdi. Universite Lyon 2; FranciaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95103Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-111687-2770CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:26Zoai:ri.conicet.gov.ar:11336/95103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:26.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| title |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| spellingShingle |
A family of singular ordinary differential equations of the third order with an integral boundary condition Boukrouche, Mahdi EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
| title_short |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| title_full |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| title_fullStr |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| title_full_unstemmed |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| title_sort |
A family of singular ordinary differential equations of the third order with an integral boundary condition |
| dc.creator.none.fl_str_mv |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
| author |
Boukrouche, Mahdi |
| author_facet |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
| author_role |
author |
| author2 |
Tarzia, Domingo Alberto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
| topic |
EXPLICIT SOLUTION INTEGRAL BOUNDARY CONDITION NON-CLASSICAL HEAT EQUATION SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER VOLTERRA INTEGRAL EQUATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem. Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
| description |
We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95103 Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11 1687-2770 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/95103 |
| identifier_str_mv |
Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11 1687-2770 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-x info:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597124227268608 |
| score |
13.24909 |