A family of singular ordinary differential equations of the third order with an integral boundary condition

Autores
Boukrouche, Mahdi; Tarzia, Domingo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.
Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95103

id CONICETDig_72f95111256266061542f5e65fd57ecc
oai_identifier_str oai:ri.conicet.gov.ar:11336/95103
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A family of singular ordinary differential equations of the third order with an integral boundary conditionBoukrouche, MahdiTarzia, Domingo AlbertoEXPLICIT SOLUTIONINTEGRAL BOUNDARY CONDITIONNON-CLASSICAL HEAT EQUATIONSINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDERVOLTERRA INTEGRAL EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.Fil: Boukrouche, Mahdi. Universite Lyon 2; FranciaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95103Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-111687-2770CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:49Zoai:ri.conicet.gov.ar:11336/95103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:49.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A family of singular ordinary differential equations of the third order with an integral boundary condition
title A family of singular ordinary differential equations of the third order with an integral boundary condition
spellingShingle A family of singular ordinary differential equations of the third order with an integral boundary condition
Boukrouche, Mahdi
EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION
title_short A family of singular ordinary differential equations of the third order with an integral boundary condition
title_full A family of singular ordinary differential equations of the third order with an integral boundary condition
title_fullStr A family of singular ordinary differential equations of the third order with an integral boundary condition
title_full_unstemmed A family of singular ordinary differential equations of the third order with an integral boundary condition
title_sort A family of singular ordinary differential equations of the third order with an integral boundary condition
dc.creator.none.fl_str_mv Boukrouche, Mahdi
Tarzia, Domingo Alberto
author Boukrouche, Mahdi
author_facet Boukrouche, Mahdi
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION
topic EXPLICIT SOLUTION
INTEGRAL BOUNDARY CONDITION
NON-CLASSICAL HEAT EQUATION
SINGULAR ORDINARY DIFFERENTIAL EQUATION OF THIRD ORDER
VOLTERRA INTEGRAL EQUATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.
Fil: Boukrouche, Mahdi. Universite Lyon 2; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description We establish in this paper the equivalence between a Volterra integral equation of the second kind and a singular ordinary differential equation of the third order with two initial conditions and an integral boundary condition, with a real parameter. This equivalence allows us to obtain the solution to some problems for non-classical heat equation, the continuous dependence of the solution with respect to the parameter and the corresponding explicit solution to the considered problem.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95103
Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11
1687-2770
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95103
identifier_str_mv Boukrouche, Mahdi; Tarzia, Domingo Alberto; A family of singular ordinary differential equations of the third order with an integral boundary condition; Springer; Boundary Value Problems; 2018; 1; 12-2018; 1-11
1687-2770
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-018-0950-x
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-018-0950-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613119094030336
score 13.070432