Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source
- Autores
- Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given.
Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Villa Saravia, Luis Tadeo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina - Materia
-
EXPLICIT SOLUTIONS
NON-CLASSICAL HEAT EQUATION
NONLINEAR HEAT CONDUCTION PROBLEMS
VOLTERRA INTEGRAL EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121273
Ver los metadatos del registro completo
id |
CONICETDig_affb8f62cda3dcdbd1be5340c62fbfb8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121273 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat sourceCeretani, Andrea NoemíTarzia, Domingo AlbertoVilla Saravia, Luis TadeoEXPLICIT SOLUTIONSNON-CLASSICAL HEAT EQUATIONNONLINEAR HEAT CONDUCTION PROBLEMSVOLTERRA INTEGRAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given.Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Villa Saravia, Luis Tadeo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121273Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo; Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source; Springer; Boundary Value Problems; 2015; 1; 12-2015; 1-261687-27621687-2770CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-015-0416-3info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-015-0416-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:40Zoai:ri.conicet.gov.ar:11336/121273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:41.123CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
title |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
spellingShingle |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source Ceretani, Andrea Noemí EXPLICIT SOLUTIONS NON-CLASSICAL HEAT EQUATION NONLINEAR HEAT CONDUCTION PROBLEMS VOLTERRA INTEGRAL EQUATIONS |
title_short |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
title_full |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
title_fullStr |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
title_full_unstemmed |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
title_sort |
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source |
dc.creator.none.fl_str_mv |
Ceretani, Andrea Noemí Tarzia, Domingo Alberto Villa Saravia, Luis Tadeo |
author |
Ceretani, Andrea Noemí |
author_facet |
Ceretani, Andrea Noemí Tarzia, Domingo Alberto Villa Saravia, Luis Tadeo |
author_role |
author |
author2 |
Tarzia, Domingo Alberto Villa Saravia, Luis Tadeo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EXPLICIT SOLUTIONS NON-CLASSICAL HEAT EQUATION NONLINEAR HEAT CONDUCTION PROBLEMS VOLTERRA INTEGRAL EQUATIONS |
topic |
EXPLICIT SOLUTIONS NON-CLASSICAL HEAT EQUATION NONLINEAR HEAT CONDUCTION PROBLEMS VOLTERRA INTEGRAL EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given. Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Villa Saravia, Luis Tadeo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina |
description |
A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121273 Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo; Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source; Springer; Boundary Value Problems; 2015; 1; 12-2015; 1-26 1687-2762 1687-2770 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121273 |
identifier_str_mv |
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo; Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source; Springer; Boundary Value Problems; 2015; 1; 12-2015; 1-26 1687-2762 1687-2770 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13661-015-0416-3 info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-015-0416-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614035743440896 |
score |
13.070432 |