Non linear fracture mechanics of polymers: Load Separation and Normalization methods

Autores
Frontini, Patricia Maria; Fasce, Laura Alejandra; Rueda, Federico
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fracture toughness of ductile polymers can be measured by the incremental crack growth resistance curve, where J-Integral value is plotted as a function of crack extension. The determination of the resistance curve, J-R, is generally performed through the so-called multiple-specimen technique. In this procedure, several identical specimens are loaded to obtain different amounts of crack growth, thus involving a large number of tests and large quantity of test material. It is also hard to apply in situations such as under high-loading rate conditions, elevated temperatures and/or aggressive environments where it is difficult to stop the test to measure crack extension. Consequently, alternative single specimen techniques appear attractive. The theoretical basis for the single specimen J form used in the incremental J-R curves is given by the Load Separation Principle. It is based on the assumption that the load can be represented as the multiplication of two separate functions: a crack geometry function and a material deformation function. This principle allows the introduction of the so-called η parameter which greatly simplifies J calculation. The crack geometry function is general represented as a power law function which exponent coincides with η factor. By analyzing load line displacement records of several blunt notched specimens differing in their initial crack length before the starting of crack propagation it is possible to evaluate η factor and verify Load Separation Principle assumption. Based on the validity of this principle two methodologies have been developed: Load Separation method, S pb, and Normalization Data Reduction technique. These methodologies have the inherent advantage of developing J-R curves directly from a single load versus load-line displacement record without using any sophisticated automated crack length monitoring system. Load Separation method infers the growing crack length from the load ratio of two load-displacement records: one growing crack and other stationary crack. Normalization method utilizes the Material Key Curve, calibrated using one individual normalized load-displacement record, to infer the instantaneous crack length. Variants of both methodologies have been already successfully used in ductile fracture characterization of polymers by several authors.Innovatively here, the Load Separation Principle and the deformation function are expressed in terms of total displacement without distinguishing between elastic and plastic displacement components. Hence, calculations are simply made using the J-Integral formula based on total energy. The performance of the proposed methods is evaluated and compared with the standard multiple-specimen technique for a broad spectrum of ductile polymers. Several features of the approaches are discussed like: suitability of functional forms, influence of blunting assumption, calibration points and general limitations to their application. The results demonstrate the ease and the accurate of the Normalization method based on total displacement for ductile polymer J-R curve determination. Conversely, the great potentiality of Load Separation method relies on the special fracture cases in which the actual final crack length cannot be easily determined. © 2011 Elsevier Ltd.
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Fasce, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
Ductile Polymers Fracture Toughness Testing
J-Integral Approach
Load Separation Method
Normalization Method
R Curves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55986

id CONICETDig_717d12f249c9ffbdcb007385c9cd71ed
oai_identifier_str oai:ri.conicet.gov.ar:11336/55986
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non linear fracture mechanics of polymers: Load Separation and Normalization methodsFrontini, Patricia MariaFasce, Laura AlejandraRueda, FedericoDuctile Polymers Fracture Toughness TestingJ-Integral ApproachLoad Separation MethodNormalization MethodR Curveshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Fracture toughness of ductile polymers can be measured by the incremental crack growth resistance curve, where J-Integral value is plotted as a function of crack extension. The determination of the resistance curve, J-R, is generally performed through the so-called multiple-specimen technique. In this procedure, several identical specimens are loaded to obtain different amounts of crack growth, thus involving a large number of tests and large quantity of test material. It is also hard to apply in situations such as under high-loading rate conditions, elevated temperatures and/or aggressive environments where it is difficult to stop the test to measure crack extension. Consequently, alternative single specimen techniques appear attractive. The theoretical basis for the single specimen J form used in the incremental J-R curves is given by the Load Separation Principle. It is based on the assumption that the load can be represented as the multiplication of two separate functions: a crack geometry function and a material deformation function. This principle allows the introduction of the so-called η parameter which greatly simplifies J calculation. The crack geometry function is general represented as a power law function which exponent coincides with η factor. By analyzing load line displacement records of several blunt notched specimens differing in their initial crack length before the starting of crack propagation it is possible to evaluate η factor and verify Load Separation Principle assumption. Based on the validity of this principle two methodologies have been developed: Load Separation method, S pb, and Normalization Data Reduction technique. These methodologies have the inherent advantage of developing J-R curves directly from a single load versus load-line displacement record without using any sophisticated automated crack length monitoring system. Load Separation method infers the growing crack length from the load ratio of two load-displacement records: one growing crack and other stationary crack. Normalization method utilizes the Material Key Curve, calibrated using one individual normalized load-displacement record, to infer the instantaneous crack length. Variants of both methodologies have been already successfully used in ductile fracture characterization of polymers by several authors.Innovatively here, the Load Separation Principle and the deformation function are expressed in terms of total displacement without distinguishing between elastic and plastic displacement components. Hence, calculations are simply made using the J-Integral formula based on total energy. The performance of the proposed methods is evaluated and compared with the standard multiple-specimen technique for a broad spectrum of ductile polymers. Several features of the approaches are discussed like: suitability of functional forms, influence of blunting assumption, calibration points and general limitations to their application. The results demonstrate the ease and the accurate of the Normalization method based on total displacement for ductile polymer J-R curve determination. Conversely, the great potentiality of Load Separation method relies on the special fracture cases in which the actual final crack length cannot be easily determined. © 2011 Elsevier Ltd.Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Fasce, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaPergamon-Elsevier Science Ltd2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55986Frontini, Patricia Maria; Fasce, Laura Alejandra; Rueda, Federico; Non linear fracture mechanics of polymers: Load Separation and Normalization methods; Pergamon-Elsevier Science Ltd; Engineering Fracture Mechanics; 79; 1-2012; 389-4140013-7944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfracmech.2011.11.020info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013794411004280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:17Zoai:ri.conicet.gov.ar:11336/55986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:17.759CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non linear fracture mechanics of polymers: Load Separation and Normalization methods
title Non linear fracture mechanics of polymers: Load Separation and Normalization methods
spellingShingle Non linear fracture mechanics of polymers: Load Separation and Normalization methods
Frontini, Patricia Maria
Ductile Polymers Fracture Toughness Testing
J-Integral Approach
Load Separation Method
Normalization Method
R Curves
title_short Non linear fracture mechanics of polymers: Load Separation and Normalization methods
title_full Non linear fracture mechanics of polymers: Load Separation and Normalization methods
title_fullStr Non linear fracture mechanics of polymers: Load Separation and Normalization methods
title_full_unstemmed Non linear fracture mechanics of polymers: Load Separation and Normalization methods
title_sort Non linear fracture mechanics of polymers: Load Separation and Normalization methods
dc.creator.none.fl_str_mv Frontini, Patricia Maria
Fasce, Laura Alejandra
Rueda, Federico
author Frontini, Patricia Maria
author_facet Frontini, Patricia Maria
Fasce, Laura Alejandra
Rueda, Federico
author_role author
author2 Fasce, Laura Alejandra
Rueda, Federico
author2_role author
author
dc.subject.none.fl_str_mv Ductile Polymers Fracture Toughness Testing
J-Integral Approach
Load Separation Method
Normalization Method
R Curves
topic Ductile Polymers Fracture Toughness Testing
J-Integral Approach
Load Separation Method
Normalization Method
R Curves
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Fracture toughness of ductile polymers can be measured by the incremental crack growth resistance curve, where J-Integral value is plotted as a function of crack extension. The determination of the resistance curve, J-R, is generally performed through the so-called multiple-specimen technique. In this procedure, several identical specimens are loaded to obtain different amounts of crack growth, thus involving a large number of tests and large quantity of test material. It is also hard to apply in situations such as under high-loading rate conditions, elevated temperatures and/or aggressive environments where it is difficult to stop the test to measure crack extension. Consequently, alternative single specimen techniques appear attractive. The theoretical basis for the single specimen J form used in the incremental J-R curves is given by the Load Separation Principle. It is based on the assumption that the load can be represented as the multiplication of two separate functions: a crack geometry function and a material deformation function. This principle allows the introduction of the so-called η parameter which greatly simplifies J calculation. The crack geometry function is general represented as a power law function which exponent coincides with η factor. By analyzing load line displacement records of several blunt notched specimens differing in their initial crack length before the starting of crack propagation it is possible to evaluate η factor and verify Load Separation Principle assumption. Based on the validity of this principle two methodologies have been developed: Load Separation method, S pb, and Normalization Data Reduction technique. These methodologies have the inherent advantage of developing J-R curves directly from a single load versus load-line displacement record without using any sophisticated automated crack length monitoring system. Load Separation method infers the growing crack length from the load ratio of two load-displacement records: one growing crack and other stationary crack. Normalization method utilizes the Material Key Curve, calibrated using one individual normalized load-displacement record, to infer the instantaneous crack length. Variants of both methodologies have been already successfully used in ductile fracture characterization of polymers by several authors.Innovatively here, the Load Separation Principle and the deformation function are expressed in terms of total displacement without distinguishing between elastic and plastic displacement components. Hence, calculations are simply made using the J-Integral formula based on total energy. The performance of the proposed methods is evaluated and compared with the standard multiple-specimen technique for a broad spectrum of ductile polymers. Several features of the approaches are discussed like: suitability of functional forms, influence of blunting assumption, calibration points and general limitations to their application. The results demonstrate the ease and the accurate of the Normalization method based on total displacement for ductile polymer J-R curve determination. Conversely, the great potentiality of Load Separation method relies on the special fracture cases in which the actual final crack length cannot be easily determined. © 2011 Elsevier Ltd.
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Fasce, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Rueda, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description Fracture toughness of ductile polymers can be measured by the incremental crack growth resistance curve, where J-Integral value is plotted as a function of crack extension. The determination of the resistance curve, J-R, is generally performed through the so-called multiple-specimen technique. In this procedure, several identical specimens are loaded to obtain different amounts of crack growth, thus involving a large number of tests and large quantity of test material. It is also hard to apply in situations such as under high-loading rate conditions, elevated temperatures and/or aggressive environments where it is difficult to stop the test to measure crack extension. Consequently, alternative single specimen techniques appear attractive. The theoretical basis for the single specimen J form used in the incremental J-R curves is given by the Load Separation Principle. It is based on the assumption that the load can be represented as the multiplication of two separate functions: a crack geometry function and a material deformation function. This principle allows the introduction of the so-called η parameter which greatly simplifies J calculation. The crack geometry function is general represented as a power law function which exponent coincides with η factor. By analyzing load line displacement records of several blunt notched specimens differing in their initial crack length before the starting of crack propagation it is possible to evaluate η factor and verify Load Separation Principle assumption. Based on the validity of this principle two methodologies have been developed: Load Separation method, S pb, and Normalization Data Reduction technique. These methodologies have the inherent advantage of developing J-R curves directly from a single load versus load-line displacement record without using any sophisticated automated crack length monitoring system. Load Separation method infers the growing crack length from the load ratio of two load-displacement records: one growing crack and other stationary crack. Normalization method utilizes the Material Key Curve, calibrated using one individual normalized load-displacement record, to infer the instantaneous crack length. Variants of both methodologies have been already successfully used in ductile fracture characterization of polymers by several authors.Innovatively here, the Load Separation Principle and the deformation function are expressed in terms of total displacement without distinguishing between elastic and plastic displacement components. Hence, calculations are simply made using the J-Integral formula based on total energy. The performance of the proposed methods is evaluated and compared with the standard multiple-specimen technique for a broad spectrum of ductile polymers. Several features of the approaches are discussed like: suitability of functional forms, influence of blunting assumption, calibration points and general limitations to their application. The results demonstrate the ease and the accurate of the Normalization method based on total displacement for ductile polymer J-R curve determination. Conversely, the great potentiality of Load Separation method relies on the special fracture cases in which the actual final crack length cannot be easily determined. © 2011 Elsevier Ltd.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55986
Frontini, Patricia Maria; Fasce, Laura Alejandra; Rueda, Federico; Non linear fracture mechanics of polymers: Load Separation and Normalization methods; Pergamon-Elsevier Science Ltd; Engineering Fracture Mechanics; 79; 1-2012; 389-414
0013-7944
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55986
identifier_str_mv Frontini, Patricia Maria; Fasce, Laura Alejandra; Rueda, Federico; Non linear fracture mechanics of polymers: Load Separation and Normalization methods; Pergamon-Elsevier Science Ltd; Engineering Fracture Mechanics; 79; 1-2012; 389-414
0013-7944
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfracmech.2011.11.020
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013794411004280
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614516627734528
score 13.070432