Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing

Autores
Martinez, Ricardo Antonio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ductile iron (DI) is a family of cast alloys that covers a wide range of mechanical properties, depending on its matrix microstructure. For instance, ferritic matrices used in parts, such as automotive suspension components, demand high impact properties and ductility among some of their main requirements. On the other hand, pearlitic and martensitic matrices are used when hardness, strength and wear resistance are of particular concern. When it comes to very high strength parts, ausferritic matrices, typically austempered ductile iron (ADI), are widely used. DI has been employed to replace cast and forged steels in a large number of applications and its production has shown a sustained rate of growth over the last decades. Knowing about failure modes and fracture mechanisms associated to materials with the properties mentioned above is crucial, since they can be of great value for designers of mechanical components. This paper deals with the analysis of fracture surfaces of ductile cast iron generated under different conditions of load application, temperature and environments. The studies include the examination of fracture surfaces obtained by means of tensile tests, impact tests and by samples used to determine fracture toughness properties, where the zones of fatigue pre-crack and monotonic load condition were evaluated. A special case of ductile iron fracture is also examined. The study of the different surfaces permitted to establish patterns that contributed to unveil the fracture mechanisms of ductile iron with different matrices, nodule count, etc.
Fil: Martinez, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Materia
Fundición
Superficie de Fractura
Matriz
Mecanismo
Ductile Iron
Matrix
Fracture Surface
Mechanism
Load
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13137

id CONICETDig_99ffc71710e846647f29be256e9cee4b
oai_identifier_str oai:ri.conicet.gov.ar:11336/13137
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearingMartinez, Ricardo AntonioFundiciónSuperficie de FracturaMatrizMecanismoDuctile IronMatrixFracture SurfaceMechanismLoadhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Ductile iron (DI) is a family of cast alloys that covers a wide range of mechanical properties, depending on its matrix microstructure. For instance, ferritic matrices used in parts, such as automotive suspension components, demand high impact properties and ductility among some of their main requirements. On the other hand, pearlitic and martensitic matrices are used when hardness, strength and wear resistance are of particular concern. When it comes to very high strength parts, ausferritic matrices, typically austempered ductile iron (ADI), are widely used. DI has been employed to replace cast and forged steels in a large number of applications and its production has shown a sustained rate of growth over the last decades. Knowing about failure modes and fracture mechanisms associated to materials with the properties mentioned above is crucial, since they can be of great value for designers of mechanical components. This paper deals with the analysis of fracture surfaces of ductile cast iron generated under different conditions of load application, temperature and environments. The studies include the examination of fracture surfaces obtained by means of tensile tests, impact tests and by samples used to determine fracture toughness properties, where the zones of fatigue pre-crack and monotonic load condition were evaluated. A special case of ductile iron fracture is also examined. The study of the different surfaces permitted to establish patterns that contributed to unveil the fracture mechanisms of ductile iron with different matrices, nodule count, etc.Fil: Martinez, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaElsevier2010-07-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13137Martinez, Ricardo Antonio; Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing; Elsevier; Engineering Fracture Mechanics; 77; 14; 24-7-2010; 2749-27620013-7944enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfracmech.2010.07.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0013794410003486info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:24Zoai:ri.conicet.gov.ar:11336/13137instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:25.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
title Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
spellingShingle Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
Martinez, Ricardo Antonio
Fundición
Superficie de Fractura
Matriz
Mecanismo
Ductile Iron
Matrix
Fracture Surface
Mechanism
Load
title_short Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
title_full Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
title_fullStr Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
title_full_unstemmed Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
title_sort Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing
dc.creator.none.fl_str_mv Martinez, Ricardo Antonio
author Martinez, Ricardo Antonio
author_facet Martinez, Ricardo Antonio
author_role author
dc.subject.none.fl_str_mv Fundición
Superficie de Fractura
Matriz
Mecanismo
Ductile Iron
Matrix
Fracture Surface
Mechanism
Load
topic Fundición
Superficie de Fractura
Matriz
Mecanismo
Ductile Iron
Matrix
Fracture Surface
Mechanism
Load
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Ductile iron (DI) is a family of cast alloys that covers a wide range of mechanical properties, depending on its matrix microstructure. For instance, ferritic matrices used in parts, such as automotive suspension components, demand high impact properties and ductility among some of their main requirements. On the other hand, pearlitic and martensitic matrices are used when hardness, strength and wear resistance are of particular concern. When it comes to very high strength parts, ausferritic matrices, typically austempered ductile iron (ADI), are widely used. DI has been employed to replace cast and forged steels in a large number of applications and its production has shown a sustained rate of growth over the last decades. Knowing about failure modes and fracture mechanisms associated to materials with the properties mentioned above is crucial, since they can be of great value for designers of mechanical components. This paper deals with the analysis of fracture surfaces of ductile cast iron generated under different conditions of load application, temperature and environments. The studies include the examination of fracture surfaces obtained by means of tensile tests, impact tests and by samples used to determine fracture toughness properties, where the zones of fatigue pre-crack and monotonic load condition were evaluated. A special case of ductile iron fracture is also examined. The study of the different surfaces permitted to establish patterns that contributed to unveil the fracture mechanisms of ductile iron with different matrices, nodule count, etc.
Fil: Martinez, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
description Ductile iron (DI) is a family of cast alloys that covers a wide range of mechanical properties, depending on its matrix microstructure. For instance, ferritic matrices used in parts, such as automotive suspension components, demand high impact properties and ductility among some of their main requirements. On the other hand, pearlitic and martensitic matrices are used when hardness, strength and wear resistance are of particular concern. When it comes to very high strength parts, ausferritic matrices, typically austempered ductile iron (ADI), are widely used. DI has been employed to replace cast and forged steels in a large number of applications and its production has shown a sustained rate of growth over the last decades. Knowing about failure modes and fracture mechanisms associated to materials with the properties mentioned above is crucial, since they can be of great value for designers of mechanical components. This paper deals with the analysis of fracture surfaces of ductile cast iron generated under different conditions of load application, temperature and environments. The studies include the examination of fracture surfaces obtained by means of tensile tests, impact tests and by samples used to determine fracture toughness properties, where the zones of fatigue pre-crack and monotonic load condition were evaluated. A special case of ductile iron fracture is also examined. The study of the different surfaces permitted to establish patterns that contributed to unveil the fracture mechanisms of ductile iron with different matrices, nodule count, etc.
publishDate 2010
dc.date.none.fl_str_mv 2010-07-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13137
Martinez, Ricardo Antonio; Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing; Elsevier; Engineering Fracture Mechanics; 77; 14; 24-7-2010; 2749-2762
0013-7944
url http://hdl.handle.net/11336/13137
identifier_str_mv Martinez, Ricardo Antonio; Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing; Elsevier; Engineering Fracture Mechanics; 77; 14; 24-7-2010; 2749-2762
0013-7944
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engfracmech.2010.07.013
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0013794410003486
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614493747806208
score 13.070432