Boundary fluxes for nonlocal diffusion
- Autores
- Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Fil: Cortazar, Carmen. Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Universidad Católica de Chile; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125450
Ver los metadatos del registro completo
id |
CONICETDig_4031ba651e543b61d99b91d1b03a5757 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125450 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Boundary fluxes for nonlocal diffusionCortazar, CarmenElgueta, ManuelRossi, Julio DanielWolanski, Noemi IreneBOUNDARY VALUE PROBLEMSNONLOCAL DIFFUSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.Fil: Cortazar, Carmen. Universidad Católica de Chile; ChileFil: Elgueta, Manuel. Universidad Católica de Chile; ChileFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125450Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-3900022-0396CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2006.12.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:13Zoai:ri.conicet.gov.ar:11336/125450instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:13.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Boundary fluxes for nonlocal diffusion |
title |
Boundary fluxes for nonlocal diffusion |
spellingShingle |
Boundary fluxes for nonlocal diffusion Cortazar, Carmen BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
title_short |
Boundary fluxes for nonlocal diffusion |
title_full |
Boundary fluxes for nonlocal diffusion |
title_fullStr |
Boundary fluxes for nonlocal diffusion |
title_full_unstemmed |
Boundary fluxes for nonlocal diffusion |
title_sort |
Boundary fluxes for nonlocal diffusion |
dc.creator.none.fl_str_mv |
Cortazar, Carmen Elgueta, Manuel Rossi, Julio Daniel Wolanski, Noemi Irene |
author |
Cortazar, Carmen |
author_facet |
Cortazar, Carmen Elgueta, Manuel Rossi, Julio Daniel Wolanski, Noemi Irene |
author_role |
author |
author2 |
Elgueta, Manuel Rossi, Julio Daniel Wolanski, Noemi Irene |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
topic |
BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition. Fil: Cortazar, Carmen. Universidad Católica de Chile; Chile Fil: Elgueta, Manuel. Universidad Católica de Chile; Chile Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125450 Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-390 0022-0396 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125450 |
identifier_str_mv |
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-390 0022-0396 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2006.12.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613134532214784 |
score |
13.070432 |