Boundary fluxes for nonlocal diffusion

Autores
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Fil: Cortazar, Carmen. Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Universidad Católica de Chile; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125450

id CONICETDig_4031ba651e543b61d99b91d1b03a5757
oai_identifier_str oai:ri.conicet.gov.ar:11336/125450
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boundary fluxes for nonlocal diffusionCortazar, CarmenElgueta, ManuelRossi, Julio DanielWolanski, Noemi IreneBOUNDARY VALUE PROBLEMSNONLOCAL DIFFUSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.Fil: Cortazar, Carmen. Universidad Católica de Chile; ChileFil: Elgueta, Manuel. Universidad Católica de Chile; ChileFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125450Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-3900022-0396CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2006.12.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:13Zoai:ri.conicet.gov.ar:11336/125450instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:13.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boundary fluxes for nonlocal diffusion
title Boundary fluxes for nonlocal diffusion
spellingShingle Boundary fluxes for nonlocal diffusion
Cortazar, Carmen
BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION
title_short Boundary fluxes for nonlocal diffusion
title_full Boundary fluxes for nonlocal diffusion
title_fullStr Boundary fluxes for nonlocal diffusion
title_full_unstemmed Boundary fluxes for nonlocal diffusion
title_sort Boundary fluxes for nonlocal diffusion
dc.creator.none.fl_str_mv Cortazar, Carmen
Elgueta, Manuel
Rossi, Julio Daniel
Wolanski, Noemi Irene
author Cortazar, Carmen
author_facet Cortazar, Carmen
Elgueta, Manuel
Rossi, Julio Daniel
Wolanski, Noemi Irene
author_role author
author2 Elgueta, Manuel
Rossi, Julio Daniel
Wolanski, Noemi Irene
author2_role author
author
author
dc.subject.none.fl_str_mv BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION
topic BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Fil: Cortazar, Carmen. Universidad Católica de Chile; Chile
Fil: Elgueta, Manuel. Universidad Católica de Chile; Chile
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125450
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-390
0022-0396
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125450
identifier_str_mv Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio Daniel; Wolanski, Noemi Irene; Boundary fluxes for nonlocal diffusion; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 234; 2; 12-2007; 360-390
0022-0396
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2006.12.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613134532214784
score 13.070432