A posteriori error analysis for nonconforming approximation of multiple eigenvalues

Autores
Boffi, Daniele; Duran, Ricardo Guillermo; Gardini, Francesca; Gastaldi, Lucia
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues.
Fil: Boffi, Daniele. Università di Pavia; Italia
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Gardini, Francesca. Università di Pavia; Italia
Fil: Gastaldi, Lucia. Università di Brescia; Italia
Materia
Eigenvalues
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18876

id CONICETDig_6e8023567785992077ab0526117fdc8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/18876
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A posteriori error analysis for nonconforming approximation of multiple eigenvaluesBoffi, DanieleDuran, Ricardo GuillermoGardini, FrancescaGastaldi, LuciaEigenvalueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues.Fil: Boffi, Daniele. Università di Pavia; ItaliaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Gardini, Francesca. Università di Pavia; ItaliaFil: Gastaldi, Lucia. Università di Brescia; ItaliaWiley2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18876Boffi, Daniele; Duran, Ricardo Guillermo; Gardini, Francesca; Gastaldi, Lucia; A posteriori error analysis for nonconforming approximation of multiple eigenvalues; Wiley; Mathematical Methods In The Applied Sciences; 40; 2; 1-2017; 350-3690170-4214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mma.3452info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mma.3452/abstractinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5560info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:35Zoai:ri.conicet.gov.ar:11336/18876instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:36.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A posteriori error analysis for nonconforming approximation of multiple eigenvalues
title A posteriori error analysis for nonconforming approximation of multiple eigenvalues
spellingShingle A posteriori error analysis for nonconforming approximation of multiple eigenvalues
Boffi, Daniele
Eigenvalues
title_short A posteriori error analysis for nonconforming approximation of multiple eigenvalues
title_full A posteriori error analysis for nonconforming approximation of multiple eigenvalues
title_fullStr A posteriori error analysis for nonconforming approximation of multiple eigenvalues
title_full_unstemmed A posteriori error analysis for nonconforming approximation of multiple eigenvalues
title_sort A posteriori error analysis for nonconforming approximation of multiple eigenvalues
dc.creator.none.fl_str_mv Boffi, Daniele
Duran, Ricardo Guillermo
Gardini, Francesca
Gastaldi, Lucia
author Boffi, Daniele
author_facet Boffi, Daniele
Duran, Ricardo Guillermo
Gardini, Francesca
Gastaldi, Lucia
author_role author
author2 Duran, Ricardo Guillermo
Gardini, Francesca
Gastaldi, Lucia
author2_role author
author
author
dc.subject.none.fl_str_mv Eigenvalues
topic Eigenvalues
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues.
Fil: Boffi, Daniele. Università di Pavia; Italia
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Gardini, Francesca. Università di Pavia; Italia
Fil: Gastaldi, Lucia. Università di Brescia; Italia
description In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18876
Boffi, Daniele; Duran, Ricardo Guillermo; Gardini, Francesca; Gastaldi, Lucia; A posteriori error analysis for nonconforming approximation of multiple eigenvalues; Wiley; Mathematical Methods In The Applied Sciences; 40; 2; 1-2017; 350-369
0170-4214
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18876
identifier_str_mv Boffi, Daniele; Duran, Ricardo Guillermo; Gardini, Francesca; Gastaldi, Lucia; A posteriori error analysis for nonconforming approximation of multiple eigenvalues; Wiley; Mathematical Methods In The Applied Sciences; 40; 2; 1-2017; 350-369
0170-4214
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/mma.3452
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mma.3452/abstract
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5560
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781826337603584
score 12.982451