Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation
- Autores
- Giribet, Gaston Enrique
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We continue the study of hidden Z2 symmetries of the four-point sl (2) k Knizhnik-Zamolodchikov equation initiated by Giribet [Phys. Lett. B 628, 148 (2005)]. Here, we focus our attention on the four-point correlation function in those cases where one spectral flowed state of the sector ω=1 is involved. We give a formula that shows how this observable can be expressed in terms of the four-point function of non spectral flowed states. This means that the formula holding for the winding violating four-string scattering processes in AdS3 has a simple expression in terms of the one for the conservative case, generalizing what is known for the case of three-point functions, where the violating and the nonviolating structure constants turn out to be connected one to each other in a similar way. What makes this connection particularly simple is the fact that, unlike what one would naively expect, it is not necessary to explicitly solve the five-point function containing a single spectral flow operator to this end. Instead, nondiagonal functional relations between different solutions of the Knizhnik-Zamolodchikov equation turn out to be the key point for this short path to exist. Considering such functional relation is necessary but it is not sufficient; besides, the formula also follows from the relation existing between correlators in both Wess-Zumino-Novikov-Witten (WZNW) and Liouville conformal theories. © 2007 American Institute of Physics.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Cft
Vertex Algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67753
Ver los metadatos del registro completo
id |
CONICETDig_6e0514e7380fb3979940d025818a1dbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67753 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equationGiribet, Gaston EnriqueCftVertex Algebrahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We continue the study of hidden Z2 symmetries of the four-point sl (2) k Knizhnik-Zamolodchikov equation initiated by Giribet [Phys. Lett. B 628, 148 (2005)]. Here, we focus our attention on the four-point correlation function in those cases where one spectral flowed state of the sector ω=1 is involved. We give a formula that shows how this observable can be expressed in terms of the four-point function of non spectral flowed states. This means that the formula holding for the winding violating four-string scattering processes in AdS3 has a simple expression in terms of the one for the conservative case, generalizing what is known for the case of three-point functions, where the violating and the nonviolating structure constants turn out to be connected one to each other in a similar way. What makes this connection particularly simple is the fact that, unlike what one would naively expect, it is not necessary to explicitly solve the five-point function containing a single spectral flow operator to this end. Instead, nondiagonal functional relations between different solutions of the Knizhnik-Zamolodchikov equation turn out to be the key point for this short path to exist. Considering such functional relation is necessary but it is not sufficient; besides, the formula also follows from the relation existing between correlators in both Wess-Zumino-Novikov-Witten (WZNW) and Liouville conformal theories. © 2007 American Institute of Physics.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Institute of Physics2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67753Giribet, Gaston Enrique; Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation; American Institute of Physics; Journal of Mathematical Physics; 48; 1; 12-2007; 1-190022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.2424789info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:36Zoai:ri.conicet.gov.ar:11336/67753instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:36.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
title |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
spellingShingle |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation Giribet, Gaston Enrique Cft Vertex Algebra |
title_short |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
title_full |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
title_fullStr |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
title_full_unstemmed |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
title_sort |
Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation |
dc.creator.none.fl_str_mv |
Giribet, Gaston Enrique |
author |
Giribet, Gaston Enrique |
author_facet |
Giribet, Gaston Enrique |
author_role |
author |
dc.subject.none.fl_str_mv |
Cft Vertex Algebra |
topic |
Cft Vertex Algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We continue the study of hidden Z2 symmetries of the four-point sl (2) k Knizhnik-Zamolodchikov equation initiated by Giribet [Phys. Lett. B 628, 148 (2005)]. Here, we focus our attention on the four-point correlation function in those cases where one spectral flowed state of the sector ω=1 is involved. We give a formula that shows how this observable can be expressed in terms of the four-point function of non spectral flowed states. This means that the formula holding for the winding violating four-string scattering processes in AdS3 has a simple expression in terms of the one for the conservative case, generalizing what is known for the case of three-point functions, where the violating and the nonviolating structure constants turn out to be connected one to each other in a similar way. What makes this connection particularly simple is the fact that, unlike what one would naively expect, it is not necessary to explicitly solve the five-point function containing a single spectral flow operator to this end. Instead, nondiagonal functional relations between different solutions of the Knizhnik-Zamolodchikov equation turn out to be the key point for this short path to exist. Considering such functional relation is necessary but it is not sufficient; besides, the formula also follows from the relation existing between correlators in both Wess-Zumino-Novikov-Witten (WZNW) and Liouville conformal theories. © 2007 American Institute of Physics. Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We continue the study of hidden Z2 symmetries of the four-point sl (2) k Knizhnik-Zamolodchikov equation initiated by Giribet [Phys. Lett. B 628, 148 (2005)]. Here, we focus our attention on the four-point correlation function in those cases where one spectral flowed state of the sector ω=1 is involved. We give a formula that shows how this observable can be expressed in terms of the four-point function of non spectral flowed states. This means that the formula holding for the winding violating four-string scattering processes in AdS3 has a simple expression in terms of the one for the conservative case, generalizing what is known for the case of three-point functions, where the violating and the nonviolating structure constants turn out to be connected one to each other in a similar way. What makes this connection particularly simple is the fact that, unlike what one would naively expect, it is not necessary to explicitly solve the five-point function containing a single spectral flow operator to this end. Instead, nondiagonal functional relations between different solutions of the Knizhnik-Zamolodchikov equation turn out to be the key point for this short path to exist. Considering such functional relation is necessary but it is not sufficient; besides, the formula also follows from the relation existing between correlators in both Wess-Zumino-Novikov-Witten (WZNW) and Liouville conformal theories. © 2007 American Institute of Physics. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67753 Giribet, Gaston Enrique; Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation; American Institute of Physics; Journal of Mathematical Physics; 48; 1; 12-2007; 1-19 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67753 |
identifier_str_mv |
Giribet, Gaston Enrique; Note on Z2 symmetries of the Knizhnik-Zamolodchikov equation; American Institute of Physics; Journal of Mathematical Physics; 48; 1; 12-2007; 1-19 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.2424789 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083126681403392 |
score |
13.22299 |