On spectral flow symmetry and Knizhnik-Zamolodchikov equation

Autores
Giribet, Gaston Enrique
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL(2,R)k Knizhnik-Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl̂(2)k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL(2,ℝ) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik-Zamolodchikov equation.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/73286

id CONICETDig_7414a70076025fad81ac5ec3985d457c
oai_identifier_str oai:ri.conicet.gov.ar:11336/73286
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On spectral flow symmetry and Knizhnik-Zamolodchikov equationGiribet, Gaston Enriquehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL(2,R)k Knizhnik-Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl̂(2)k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL(2,ℝ) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik-Zamolodchikov equation.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73286Giribet, Gaston Enrique; On spectral flow symmetry and Knizhnik-Zamolodchikov equation; Elsevier Science; Physics Letters B; 628; 1-2; 12-2005; 148-1560370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2005.09.031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:39Zoai:ri.conicet.gov.ar:11336/73286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:39.943CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title On spectral flow symmetry and Knizhnik-Zamolodchikov equation
spellingShingle On spectral flow symmetry and Knizhnik-Zamolodchikov equation
Giribet, Gaston Enrique
title_short On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_full On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_fullStr On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_full_unstemmed On spectral flow symmetry and Knizhnik-Zamolodchikov equation
title_sort On spectral flow symmetry and Knizhnik-Zamolodchikov equation
dc.creator.none.fl_str_mv Giribet, Gaston Enrique
author Giribet, Gaston Enrique
author_facet Giribet, Gaston Enrique
author_role author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL(2,R)k Knizhnik-Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl̂(2)k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL(2,ℝ) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik-Zamolodchikov equation.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description It is well known that five-point function in Liouville field theory provides a representation of solutions of the SL(2,R)k Knizhnik-Zamolodchikov equation at the level of four-point function. Here, we make use of such representation to study some aspects of the spectral flow symmetry of sl̂(2)k affine algebra and its action on the observables of the WZNW theory. To illustrate the usefulness of this method we rederive the three-point function that violates the winding number in SL(2,ℝ) in a very succinct way. In addition, we prove several identities holding between exact solutions of the Knizhnik-Zamolodchikov equation.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/73286
Giribet, Gaston Enrique; On spectral flow symmetry and Knizhnik-Zamolodchikov equation; Elsevier Science; Physics Letters B; 628; 1-2; 12-2005; 148-156
0370-2693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/73286
identifier_str_mv Giribet, Gaston Enrique; On spectral flow symmetry and Knizhnik-Zamolodchikov equation; Elsevier Science; Physics Letters B; 628; 1-2; 12-2005; 148-156
0370-2693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2005.09.031
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083373471105024
score 13.22299