Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation

Autores
Giribet, Gaston Enrique; Simeone, Claudio Mauricio
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Ads/Cft
Conformal Field Theory
String Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61218

id CONICETDig_4c353c2a94c4590190e4af3b3ffc6ab1
oai_identifier_str oai:ri.conicet.gov.ar:11336/61218
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equationGiribet, Gaston EnriqueSimeone, Claudio MauricioAds/CftConformal Field TheoryString Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaWorld Scientific2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61218Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-48620217-751XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0217751X05021270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:15Zoai:ri.conicet.gov.ar:11336/61218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:15.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
title Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
spellingShingle Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
Giribet, Gaston Enrique
Ads/Cft
Conformal Field Theory
String Theory
title_short Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
title_full Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
title_fullStr Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
title_full_unstemmed Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
title_sort Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
dc.creator.none.fl_str_mv Giribet, Gaston Enrique
Simeone, Claudio Mauricio
author Giribet, Gaston Enrique
author_facet Giribet, Gaston Enrique
Simeone, Claudio Mauricio
author_role author
author2 Simeone, Claudio Mauricio
author2_role author
dc.subject.none.fl_str_mv Ads/Cft
Conformal Field Theory
String Theory
topic Ads/Cft
Conformal Field Theory
String Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61218
Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-4862
0217-751X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61218
identifier_str_mv Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-4862
0217-751X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0217751X05021270
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613135505293312
score 13.070432