Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation
- Autores
- Giribet, Gaston Enrique; Simeone, Claudio Mauricio
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Ads/Cft
Conformal Field Theory
String Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61218
Ver los metadatos del registro completo
id |
CONICETDig_4c353c2a94c4590190e4af3b3ffc6ab1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61218 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equationGiribet, Gaston EnriqueSimeone, Claudio MauricioAds/CftConformal Field TheoryString Theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaWorld Scientific2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61218Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-48620217-751XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0217751X05021270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:15Zoai:ri.conicet.gov.ar:11336/61218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:15.635CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
title |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
spellingShingle |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation Giribet, Gaston Enrique Ads/Cft Conformal Field Theory String Theory |
title_short |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
title_full |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
title_fullStr |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
title_full_unstemmed |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
title_sort |
Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation |
dc.creator.none.fl_str_mv |
Giribet, Gaston Enrique Simeone, Claudio Mauricio |
author |
Giribet, Gaston Enrique |
author_facet |
Giribet, Gaston Enrique Simeone, Claudio Mauricio |
author_role |
author |
author2 |
Simeone, Claudio Mauricio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ads/Cft Conformal Field Theory String Theory |
topic |
Ads/Cft Conformal Field Theory String Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company. Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
We study a class of solutions to the SL(2, ℝ)k Knizhnik-Zamolodchikov equation. First, logarithmic solutions which represent four-point correlation functions describing string scattering processes on three-dimensional anti-de Sitter space are discussed. These solutions satisfy the factorization ansatz and include logarithmic dependence on the SL(2, ℝ)-isospin variables. Different types of logarithmic singularities arising are classified and the interpretation of these is discussed. The logarithms found here fit into the usual pattern of the structure of four-point function of other examples of AdS/CFT correspondence. Composite states arising in the intermediate channels can be identified as the phenomena responsible for the appearance of such singularities in the four-point correlation functions. In addition, logarithmic solutions which are related to nonperturbative (finite k) effects are found. By means of the relation existing between four-point functions in Wess-Zumino-Novikov-Witten model formulated on SL(2, ℝ) and certain five-point functions in Liouville quantum conformal field theory, we show how the reflection symmetry of Liouville theory induces particular ℤ2 symmetry transformations on the WZNW correlators. This observation allows to find relations between different logarithmic solutions. This Liouville description also provides a natural explanation for the appearance of the logarithmic singularities in terms of the operator product expansion between degenerate and puncture fields. © World Scientific Publishing Company. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61218 Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-4862 0217-751X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61218 |
identifier_str_mv |
Giribet, Gaston Enrique; Simeone, Claudio Mauricio; Liouville theory and logarithmic solutions to knizhnik-zamolodchikov equation; World Scientific; International Journal of Modern Physics A; 20; 20-21; 12-2005; 4821-4862 0217-751X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0217751X05021270 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613135505293312 |
score |
13.070432 |