Tensor product of modules over a vertex algebra

Autores
Liberati, Jose Ignacio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
vertex algebras
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58432

id CONICETDig_b5e8d06c900006f0408eeaa5b04305e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/58432
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tensor product of modules over a vertex algebraLiberati, Jose Ignaciovertex algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2018-05info:eu-repo/date/embargoEnd/2018-12-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58432Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-12080001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.07551info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816315870info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2018.03.029info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:18Zoai:ri.conicet.gov.ar:11336/58432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:18.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tensor product of modules over a vertex algebra
title Tensor product of modules over a vertex algebra
spellingShingle Tensor product of modules over a vertex algebra
Liberati, Jose Ignacio
vertex algebras
title_short Tensor product of modules over a vertex algebra
title_full Tensor product of modules over a vertex algebra
title_fullStr Tensor product of modules over a vertex algebra
title_full_unstemmed Tensor product of modules over a vertex algebra
title_sort Tensor product of modules over a vertex algebra
dc.creator.none.fl_str_mv Liberati, Jose Ignacio
author Liberati, Jose Ignacio
author_facet Liberati, Jose Ignacio
author_role author
dc.subject.none.fl_str_mv vertex algebras
topic vertex algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
info:eu-repo/date/embargoEnd/2018-12-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58432
Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-1208
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58432
identifier_str_mv Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-1208
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.07551
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816315870
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2018.03.029
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981052032745472
score 12.48226