Tensor product of modules over a vertex algebra
- Autores
- Liberati, Jose Ignacio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
- vertex algebras
- Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58432
Ver los metadatos del registro completo
id |
CONICETDig_b5e8d06c900006f0408eeaa5b04305e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58432 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tensor product of modules over a vertex algebraLiberati, Jose Ignaciovertex algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct.Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2018-05info:eu-repo/date/embargoEnd/2018-12-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58432Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-12080001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.07551info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816315870info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2018.03.029info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:18Zoai:ri.conicet.gov.ar:11336/58432instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:18.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tensor product of modules over a vertex algebra |
title |
Tensor product of modules over a vertex algebra |
spellingShingle |
Tensor product of modules over a vertex algebra Liberati, Jose Ignacio vertex algebras |
title_short |
Tensor product of modules over a vertex algebra |
title_full |
Tensor product of modules over a vertex algebra |
title_fullStr |
Tensor product of modules over a vertex algebra |
title_full_unstemmed |
Tensor product of modules over a vertex algebra |
title_sort |
Tensor product of modules over a vertex algebra |
dc.creator.none.fl_str_mv |
Liberati, Jose Ignacio |
author |
Liberati, Jose Ignacio |
author_facet |
Liberati, Jose Ignacio |
author_role |
author |
dc.subject.none.fl_str_mv |
vertex algebras |
topic |
vertex algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct. Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We found a necessary and sufficient condition for the existence of the tensorproduct of modules over a vertex algebra. We defined the notion of vertexbilinear map and we provide two algebraic construction of the tensor product,where one of them is of ring theoretical type. We show the relation between thetensor product and the vertex homomorphisms. We prove the commutativity of thetensor product. We also prove the associativity of the tensor product ofmodules under certain necessary and sufficient condition. Finally, we showcertain functorial properties of the vertex homomorphims and the tensorproduct. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 info:eu-repo/date/embargoEnd/2018-12-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58432 Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-1208 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58432 |
identifier_str_mv |
Liberati, Jose Ignacio; Tensor product of modules over a vertex algebra; Academic Press Inc Elsevier Science; Advances in Mathematics; 330; 5-2018; 1160-1208 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.07551 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816315870 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2018.03.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981052032745472 |
score |
12.48226 |